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Abstract. The Biomagnetic Fluid Flow (BFD) (blood) over a stretching sheet in the presence of

magnetic field is studied. For the mathematical formulation of the problem both magnetization and

electrical conductivity of blood are taken into account and consequently both principles of Mag-

netohydrodynamics (MHD) and FerroHydroDynamics (FHD) are adopted. The physical problem

is described by a coupled, nonlinear system of ordinary differential equations subject to appropri-

ate boundary conditions. This solution is obtained numerically by applying an efficient numerical

technique based on finite differences method. The obtained results are presented graphically for

different values of the parameters entering into the problem under consideration. Emphasis is given

to the study of the effect of the MHD and FHD interaction parameters on the flow field. It is appar-

ent that both parameters effect significantly on various characteristics of the flow and consequently

neither electrical conductivity nor magnetization of blood could be neglected.
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1. Introduction

Biomagnetic fluid dynamics (BFD) is a relatively new area of fluid mechanics. Numerous applications have

been proposed in bioengineering and medical science some of them include cancer tumor treatment by using

magnetic hyperthermia or development of magnetic devices for cell separation [1, 2, 3].

BFD is the study of the effect of an applied magnetic field on biological fluid flow. An initial model

of BFD was developed by Haik et al. and is actually based on the principles of Ferrohydrodynamics (FHD)

[4]. According to this formulation, blood is considered as an electrically non conducting magnetic fluid and

the flow is affected by the magnetization of the fluid in the magnetic field. Thus, the arising force is due

to magnetization and depends on the existence of a spatially varying magnetic field. However, blood also

possesses properties of an electrically conducting fluid due to the ions in the plasma. The flowing ions produce

a slight electric current which interacts with magnetic fields. The formulation of electrically conducting fluids is

made by adopting the principles of the well–known MagnetoHydroDynamics (MHD) which in contrast to FHD

ignores the effect of polarization and magnetization [5]. In order to formulate the entire magnetic properties of

blood i.e. electrical conductivity along with polarization an extended BFD model was developed. This model

is consistent with the properties of MHD as well as with those of FHD and also includes the energy equation

[6].

The shear-driven flow over a stretching sheet constitutes a classical physical problem first studied by

Crane in 1970 for a Newtonian fluid [7]. Later, Anderson derived an exact similarity solution for velocity

and pressure of the magnetohydrodynamic flow past a stretching sheet [8]. The study of MHD flow over a

stretching sheet still constitutes a topic of current ongoing research. The radiation effects on the MHD flow

near the stagnation point of a stretching sheet was studied by Jat and Chaudhary and Pop et al. [9, 10]. Das

et al. studied the unsteady MHD flow of nanofluids over an accelerating convectively heated stretching sheet

in the presence of a transverse magnetic field with heat source/sink [11]. The MHD flow of a viscous liquid

film over a stretching sheet under different non–linear stretching velocities was studied by Dandapat et. al.

[12]. Finally, a characteristic study concerning applications of MHD flow problems to hemodynamics is that

of the steady incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a parallel

plate channel with stretching walls in the presence of a magnetic field [13].



Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet3

Furthermore, analogous FHD flows over a stretching sheet have been investigated as well. A classical

study Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole is that of

Anderson and Valnes [14]. Recently, Zeeshan et al. studied the effect of thermal radiation and heat transfer on

the flow of ferromagnetic fluid on a stretching sheet. The appropriate combination of non–magnetic viscous

base fluid, magnetic solid and surfactant composes magnetic fluid in the presence of magnetic dipole [15].

Finally, Tzirtzilakis and Kafoussias studied the three-dimensional laminar and steady boundary layer flow of

an electrically non–conducting and incompressible magnetic fluid, with low Curie temperature and moderate

saturation magnetization, over an elastic stretching sheet. It was also assumed that the magnetization of the

fluid varied with the magnetic field strength H and the temperature T [16].

As far as the BFD flow over a stretching sheet is concerned the first work has been carried out by

Tzirtzilakis and Kafoussias which was the study of a biomagnetic fluid flow over a stretching sheet with

non–linear temperature dependent magnetization [17]. Moreover, Tzirtzilakis and Tanoudis have presented a

numerical method for the study of laminar incompressible two dimensional biofluid over a stretching sheet

with heat transfer. It was assumed that the magnetization of the fluid varied with the magnetic field strength

H and the temperature T [18]. Recently, Misra and Shit studied the BFD flow of a non–Newtonian viscoelastic

fluid over a stretching sheet under the influence of an applied magnetic field generated by a magnetic dipole.

The magnetization of the fluid is considered to vary linearly with temperature as well as the magnetic field

intensity [19].

To the authors’ knowledge all the above mentioned BFD flows over a stretching sheet have been studied

using either the formulation consistent with the principles of FHD or the formulation consistent with the

principles of MHD. So, the present study concerns the flow of biomagnetic fluid over a stretching sheet,

in the present of an applied magnetic field using the extended BFD model incorporating both FHD and

MHD formulations [6]. The magnetization is considered to vary with the temperature and the magnetic field

strength intensity and the biofluid is treated as an electrically conducting magnetic fluid which is also exhibits

magnetization. The formulation of the problem is obtained by an analogous manner presented in previous

studies [14, 17] and the numerical solution is obtained by applying an efficient numerical technique based on the

common finite difference method [20]. The obtained results for critical flow characteristics like velocity, pressure

and temperate as well as rate of heat transfer, skin friction or pressure on the stretching sheet are presented
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graphically for specific parameters entering into the problem under consideration. Special detailed analysis is

performed for the variation of these physical quantities with the FHD and MHD interaction parameters which

formulate the forces arising due to magnetization and the electrical conductivity, respectively.

2. Mathematical Formulation

Let us consider the viscous, steady, two–dimensional, laminar flow of an incompressible and electrically con-

ducting biomagnetic fluid past a flat elastic sheet which is stretched with a velocity proportional to distance

i.e. u = cx, where c is a dimensional constant. The temperature of the stretched sheet Tw is kept fixed and

the temperature of the fluid far away from the sheet is Tc, where Tc > Tw. The fluid is confined to the half

space above the sheet and magnetic dipole is located at distance d below the sheet, giving rise to a magnetic

field of sufficient strength to saturate the biomagnetic fluid. The flow configuration is shown schematically at

figure 1.

Figure 1: Flow configuration of the flow field

Under the above assumptions the equations governing the flow under consideration are [5, 21]:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0 (1)

Momentum equations:

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= − ∂p
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∂x
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yu+ σBxByv + µ

(
∂2u

∂x2
+
∂2u
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)
, (2)
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Energy equation:

ρCp
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+
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∂y2

)
+
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∂u
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)2

+

(
∂v

∂y

)2
]

+

(
∂v

∂x
+
∂u

∂y

)2
]
, (4)



Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet5

subject to the boundary conditions:

y = 0 : u = cx, v = 0, T = Tw (5)

y →∞ : u = 0, T = Tc, p+ 1/2ρq2 = const. (6)

In the above equations q = (u, v) is the dimensional velocity, p is the pressure, ρ is the biomagnetic fluid

density, σ is the electrical conductivity, µ is the dynamic viscosity, Cp the specific heat at constant pressure,

k the thermal conductivity, µ0 is the magnetic permeability, H = (Hx, Hy) is the magnetic field strength and

B is the magnetic induction (B = µ0H⇒ (Bx, By) = µ0(Hx, Hy)).

The terms −σB2
yu+ σBxByv and −σB2

xv + σBxByu in (2) and (3), respectively, represent the Lorentz

force per unit volume towards the x and y directions respectively, whereas the term −σB2u2 in the energy

equation (4) represents the Joule heating. The joule heating term in the energy equation is simplified and

assumed to be generated mainly by the x–component of the velocity which is dominant in the boundary layer

flow. These terms arise due to the electrical conductivity of the fluid and are known in MHD [5, 11, 12, 13].

The terms µ0M
∂H
∂x

and µ0M
∂H
∂y

in (2) and (3), respectively, represent the components of the magnetic force

per unit volume and depend on the existence of the magnetic gradient on the corresponding x and y directions.

The second term on the left–hand side of the energy equation (4), accounts for heating due to the adiabatic

magnetization. These terms are known from FHD [6, 5, 16, 17, 18].

The magnetic dipole gives rise to a magnetic field, sufficiently strong to saturate the biofluid, and its

scalar potential is given by Andersson and Valnes [14]

V (x, y) =
α

2π

x

x2 + (y + d)2 (7)

Thus the magnitude ||H|| = H of the magnetic field intensity by

H (x, y) =
(
H2
x +H2

y

) 1
2 =

γ

2π

x

x2 + (y + d)2 (8)

where γ = α and Hx, Hy are the component of the magnetic field ~H = (Hx, Hy) given by
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Hx (x, y) = −dV
dx

=
γ

2π

x2 − (y + d)2[
x2 + (y + d)2]2 , (9)

Hy (x, y) = −dV
dy

=
γ

2π

2x (y + d)[
x2 + (y + d)2]2 . (10)

Following analogous manipulations to previous studies [14, 16, 17, 18] the gradients of the magnetic field

strength, can be obtained from equation (8) after having expanded in powers of x and retained terms up to

x2, thus


∂H

∂x
≈ − γ

2π

2x

(y + d)4 ,

∂H

∂y
≈ γ

2π

[
− 2

(y + d)3 +
4x2

(y + d)5

]
.

(11)

The magnetic field intensity H, can be expressed by an analogous manner, as

H (x, y) ≈ γ

2π

[
1

(y + d)2 −
x2

(y + d)4

]
(12)

The above relations of the magnetic field strength H and its gradients i.e. (12) and (11), respectively, are

valid close to region where x = 0 and are used for the further transformation of the system of the governing

equations.

Moreover, under the assumption that the applied magnetic field ~H is sufficiently strong to saturate the

biomagnetic fluid, the magnetization M is generally determined by the fluid temperature and magnetic field

intensity H. There is a variety of equations that can be used for the variation of the magnetization under

the equilibrium assumption [6]. In this study the relation of Matsuki et al derived experimentally is adopted.

This relation expresses the magnetization as a function of the magnetic field strength intensity H and the

temperature of the fluid T [22].

M = KH(Tc − T ) (13)

where K is a constant called pyromagnetic coefficient and Tc is the Curie temperature. The above relation

for the magnetization M has also proposed for the formulation of BFD [6] and used for stretching sheet flow

problems [16, 18].
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3. Transformation of Equations

Following Anderson and Valnes [14] we introduce the following non–dimensional coordinates


ξ (x) =

(
c
ρ

µ

) 1
2

x,

η (y) =

(
c
ρ

µ

) 1
2

y

(14)

and the variables

Ψ (ξ, η) =

(
µ

ρ

)
ξf (η) , (15)

p (ξ, η) =
P

cµ
= −P1 − ξ2P2 (η) (16)

Θ (ξ, η) =
Tc − T

Tc − Tw
= Θ1 + ξ2Θ2 (η) (17)

where Ψ (ξ, η), Θ (ξ, η) and p (ξ, η) are the stream function and the dimensionless temperature and

pressure, respectively.

The velocity components can be calculate as


u =

∂Ψ

∂y
= cxf ′ (η) ,

v = −∂Ψ

∂y
= −µ

ρ
f

(
c
ρ

µ

) 1
2

.

(18)

Substituting equations (11) to (17) into the momentum equations in (2) and (3) and the energy equation

(4) and equating the coefficients of equal power of ξ up to ξ2 then we get the following system of differential

equations
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f ′′′ + ff ′′ −
(
f ′
)2

+ 2P2 −
2α2βΘ1

(η + α)6 −Mf ′ = 0, (19)

P ′1 − f ′′ − ff ′ −
2α2βΘ1

(η + α)5 −Mf = 0, (20)

P ′2 +
6α2βΘ1

(η + α)7 −
2α2βΘ2

(η + α)5 = 0, (21)

Θ′′1 + PrfΘ′1 +
2βλα2 (Θ1 − Tε) f

(η + α)5 + 2Θ2 − 4λ
(
f ′
)2

= 0, (22)

Θ′′2 − λ
(
f ′′
)2 − Pr

(
2f ′Θ2 − fΘ′2

)
− 2βλα2 (Θ1 − Tε)

(
f ′

(η + α)6 +
3f

(η + α)7

)
+

+
2βλα2 (Θ2 − Tε) f

(η + α)5 +Mλ
(
f ′
)2

= 0. (23)

And the boundary conditions (5) and (6) are transformed to:

η = 0 : f ′ = 1, f = 0, Θ1 = 1, Θ2 = 0, (24)

η →∞ : f ′ → 0, Θ1 → 0, Θ2 → 0, P1 → −P∞, P2 → 0. (25)

The dimensional parameters appearing in the above governing equations are:

Pr =
µcp
k

Prandtl number

Tε =
Tc

Tc − Tw
Dimensionless temperature parameter

λ =
cµ2

ρk (Tc − Tw)
Viscous dissipation parameter

β =
γ

2π

µ0KH (0, 0) (Tc − Tw) ρ

µ2
Ferromagnetic interaction parameter

M =
σµ2

0H
2

cρ
Magnetohydrodynamic interaction parameter

α =

(
cρ

µ

) 1
2

d Dimensionless distance

The ferromagnetic interaction parameter arises in the governing equations due to the magnetization

(polarization) of the fluid and is consistent to the FHD properties. If one set M 6= 0 and β = 0 to the

governing equations (19)-(23) then the polarization is “switched off” and the governing equations along with

the corresponding boundary conditions correspond to the MHD flow over a stretching sheet. On the other

hand the Magnetohydrodynamic interaction parameter arises in the governing equations due to the electrical
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conductivity of the biofluids. If now one set M = 0 and β 6= 0 then the effect of the electrical conductivity

is omitted and the governing equations along with the corresponding boundary conditions formulate the pure

FHD flow over a stretching sheet. It is clear that if M = β = 0 then the set of equations corresponds to a pure

hydrodynamic flow.

The system of equations (19)-(23) subject to the boundary conditions (24) and (25), constitute a six

parameter (α, β, λ,M,Pr, Tε) coupled and non–linear system of ordinary differential equations, describing the

BFD flow over a stretching sheet when the fluids exhibits both electrical conductivity and magnetization which

is given as a function of temperature T and the magnetic field strength H.

4. Numerical Method

For the numerical solution of the problem under consideration we apply an approximate technique that has

better stability characteristics than classical Runge–Kutta combined with a shooting method, is simple, accu-

rate and efficient. The essential features of this technique are the following: (i) It is based on the common finite

difference method with central differencing (ii) on a tridiagonal matrix manipulation and (iii) on an iterative

procedure [20]. For reasons of completeness of this study we demonstrate the application of this methodology

for the numerical solution of the system of equations (19), (22) and (23), subject to the boundary conditions

(24) and (25).

The momentum Equation (19) can be written as

f ′′′ + ff ′′ − f ′2 −Mf ′ =
2α2βΘ1

(n+ α)6 − 2P2 (26)

The above equations can be considered as a second order linear differential equation by setting y(x) =

f ′(η) provided that P2 and f(η) are considered known functions. In this case equation (26) can be written as

(
f ′
)′′

+ f
(
f ′
)′ − (f ′ +M

)
f ′ =

2α2βΘ1

(n+ α)6 − 2P2

which is of the form

P (x) y′′ (x) +Q (x) y′ (x) +R (x) y (x) = S (x) (27)



10 M.G.Murtaza, E.E. Tzirtzilakis and M. Ferdows

where P (x) = 1, Q (x) = f (n), R (x) = −f ′ (n)−M , S (x) = 2α2βΘ1

(n+α)6
− 2P2.

In an analogous manner all equations of the system can be reduced in this form of equation (27) except

for equation (20) and (21) which are already first order differential equations. Equation (26) can be solved by

a common finite difference method, based on central differencing and tridiagonal matrix manipulation.

To start the solution procedure, we assume initial guesses (distribution curves) for f ′(η) and P2(η)

between η = 0 and η = η∞ (η → ∞) which satisfy the boundary conditions (24) and (25). For this problem

indicative initial guesses are

f ′ (η) =
(

1− η
η∞

)
, Θ1 =

(
1− η

η∞

)
and Θ2 = 0.5

(
η
η∞

)(
1− η

η∞

)
The f(η) distribution is obtained by the integration from f ′(η) curve. The next step is to consider the f ,

P2 and Θ1 known and to determine a new estimation for f ′(η), (f ′new) by solving the non-linear equation (27)

using the above method. The distribution is updated by the integration of new f ′ curve. These new profiles of

f ′ and f are then used for new inputs and so on. In this way the momentum equation (26) and consequently

(19) is solved iteratively until convergence up to a small quantity ε is attained.

After f(η) is obtained the solution of the energy equation (22) with boundary condition (24) and (25)

is solved by using the same algorithm, but without iteration now as for as equation (22) is linear. Equation

(22) is

Θ′′1 + PrfΘ′1 +
2βλα2 (Θ1 − Tε) f

(η + α)5 + 2Θ2 − 4λ
(
f ′
)2

= 0

which can be written as

Θ′′1 + PrfΘ′1 +
2βλα2f

(η + α)5 Θ1 =
2βλα2f

(η + α)5 Tε − 2Θ2 + 4λ
(
f ′
)2
. (28)

Equation (28) by setting y(η) = Θ1(η) is again a second order linear differential equation of the form

P (x) y′′ (x) +Q (x) y′ (x) +R (x) y (x) = S (x) (29)

where P (x) = 1, Q (x) = Prf (n), R (x) = 2βλα2f

(η+α)5
, S (x) = 2βλα2Tεf

(η+α)5
− 2Θ2 + 4λ(f ′)

2
.

Considering f , f ′ and θ2 known, we obtain a new approximation Θ1new for Θ1 and this process continues

until convergence up to a small quantity ε is attained and finally we obtain Θ1.
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Hereafter the energy equation (23) with boundary condition (24) and (25) is solved. Equation (23) can

be written as

Θ′′2 + Pr fΘ′2 +

(
2βλα2f

(η + α)5 − 2Prf ′
)

Θ2 =

2βλα2 (Θ1 − Tε)
(

f ′

(η + α)6 +
3f

(η + α)7

)
+

2βλα2fTε

(η + α)5 −Mλ
(
f ′
)2

+ λ
(
f ′′
)2

(30)

Equation (30) is a second order linear differential equation by setting y(η) = Θ2(η) which is of the form

(27) with

P (x) = 1, Q (x) = Prf (n), R (x) = 2βλα2f

(η+α)5
− 2Prf ′ (n) , and

S (x) = 2βλα2 (Θ1 − Tε)
(

f ′

(η+α)6
+ 3f

(η+α)7

)
+ 2βλα2fTε

(η+α)5
−Mλ(f ′)

2
+ λ(f ′′)

2

Considering f , f ′, f ′′ and Θ1 known we calculate the new approximation Θ2(new) for Θ2 and continue

this iteration until convergence up to a small quantity is attained and finally we obtain Θ2. Considering now

Θ1 and Θ2 known, we obtained a new estimate for P1 and P2 (equations (20)–(21)). Next the computational

procedure reverts to its starting point i.e. the aforementioned solution of equation (26) using the most re-

cent calculations of the distributions f ′(η), P (η) and Θ1(η) as inputs. This process is continuing until final

convergence of the solution is attained.

In order to apply to our numerical computation a proper step size h = ∆η = 0.01 and appropriate

η∞ value as y → η must be determined. By “trial and error” we set η∞ = 6 and the tolerance between the

iterations is set at ε = 10−4 defined as ε = max
i=1,N

(∣∣∣ fold(i)−fnew(i)
fold(i)

∣∣∣). Computations were also performed for

∆η = 0.001 and no significant differences were found.

5. Results and discussion

For the derivation of the numerical solution it is necessary to assign some numerical values to the parameters

involved in the problem under consideration. In this study we adopt case scenarios also discussed in previous

studies [23, 24] according to which the fluid is blood with density ρ = 1050kgm−3 and viscosity µ = 3.2 ×

10−3kgm−3s−3. The electrical conductivity of blood is σ = 0.8sm−1. The temperature of the plate is Tw =

37oC whereas the temperature of the fluid is Tc = 41oC. For these values the temperature number Tε is equal

to 78.5 and the viscous dissipation number is λ = 6.4×10−14. Although the viscosity µ the specific heat under
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constant pressure Cp and thermal conductivity k of any fluid and hence of the fluid is blood, are temperature

dependent the prandtl number can be considered constant. Thus, for the temperature range considered in this

problem Cp = 3.9× 103jKg−1K−1 and k = 0.5jm−1s−1K−1 and hence Pr = 25.

As far as the values of the magnetic parameters M and β are concerned there exist extended discussions

in various studies [6, 23, 24]. Especially the biomagnetic interaction parameter can take a quite large range

of values depending by the magnetic field gradient. For β in the present study we adopt values in the range

of 0 − 10 used also in previous studies [17, 18, 19]. For the magnetic parameter M the range that could be

adopted is also large and could reach the value of 600 for very strong magnetic fields [13]. In this study we

perform calculations for the range 0−10 for M. The above ranges of the magnetic parameters albeit correspond

to low values of the magnetic field strength we will see that result to considerable changes in the flow field

comparable to the hydrodynamic case which is given for M = β = 0.

In order to compare the obtained numerical results with others documented in literature, computations

were carried out by setting M = 0 and for β = 0, 2 and 5. The results are identical with those obtained by

Tzirtzilakis and Tanoudis [18] as well as with those obtained by Tzirtzilakis and Kafoussias [17] for the values

of the critical exponent δ = 0 and β = 0, 5 and the corresponding values of the parameters refereed in that

study. It is noted that the results obtained by Tzirtzilakis and Tanoudis [18] have been also validated with

results obtained by Anderson and Valnes [14] and are in accordance for the hydrodynamic case (M = β = 0)

with the results obtained by Crane [7]. Furthermore, additional comparisons were performed for the MHD case

with analytical results provided by Anderson for the dimensionless stream function f, for β = 0 and M = 5 [8].

It is found that the absolute difference at all the points of calculation between the theoretical and numerical

estimated value is less than 5 × 10−5. It is noted that the Lorentz force at the study of Anderson is risen

only due to the u-velocity component whereas, in the present study both velocity components are taken into

account (see eqs (2) and (3)). This accordance between the present results and the analytical ones presented

by Anderson indicate an interesting matter as far as the physical problem is concerned. The consideration

of both velocity components in the Lorentz force does not significantly alter the flow field and equations (2)

and (3) can be simplified. This is justified due to the fact that the u velocity component is dominant to the

boundary layer flow field and the v–velocity component is insignificant to cause further changes in the Lorentz

force. Moreover, the above results indicate that the simplification made in the energy equation concerning the
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joule heating term, i.e the consideration that only the u–velocity component gives rise to the joule heating, is

valid.

Figure 2: Variation of the dimensionless velocity component f ′(η)

From relation (18) it is apparent that f ′(η) = u/cx. The function f ′(η) is called dimensionless velocity

component and its variation is pictured at fig. 2. The curves are plotted for M = β = 0 which corresponds

to pure hydrodynamic flow, M = 0, β = 10 which corresponds to pure FHD flow, M = 5, β = 0 which

corresponds to pure MHD flow and finally for M = 5, β = 10 which correspond to the mixed FHD and MHD

flow of the extended BFD model. It is observed that the dimensionless velocity is reduced considerably with

the increment of β or M . Increment of β causes reduction of the dimensionless velocity. However, the major

reduction of the velocity is observed with the increment of M and the differences by increasing β is negligible

comparable to those occur by the increment of M .

Figure 3: Variation of the dimensionless temperature Θ1(η)

Fig. 3 shows the variation of the dimensionless temperature Θ1(η) for the same values of M and β as with

the dimensionless velocity above. Generally, the temperature in the flow field increases with the increment of

the magnetic parameters M or β. Again the greater increment of Θ1 occurs with the increment of M and when

β increases smaller increments are noticed. The higher temperature distribution in the flow field is observed

for the extended BFD case (M = 5, β = 10). The curve for M = 0, β = 5 is similar to the corresponding

one obtained in previous studies [17, 18]. The calculations show that the dimensionless temperature Θ(ξ, η)

is represented only by the function Θ1(η) whereas Θ2(η) is negligible. Namely, the calculated absolute values

of the distribution of Θ2 were less than 10−5 which is well below the accuracy of the numerical method used

and thus, Θ2 is practically zero.
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Figure 4: Variation of the dimensionless relative pressure ∆P1(η)

The dimensionless pressure P1 is estimated from integration of equation (20) under the boundary condi-

tion (25) i.e. P1 → −P∞. It is noted that this equation is not coupled to the rest of the system of the governing

equations and is solved once at the end of the procedure. The boundary condition is derived from the initial

set of the equations and the Bernoulli equation at conditions (6) holding far away from the stretching sheet. If

one consider the relative pressure ∆P1 = P1−P∞ then equation (20) can be integrated for unknown function

the relative pressure ∆P1 under the boundary condition ∆P1 → 0 as η → ∞. The variation of the relative

pressure ∆P1 for various numbers M and β is shown at fig. 4. It is obtained that the determining factor of

the reduction of the relative pressure is the parameter M . The arrows point the direction of increment for β

at the intersection of the arrow and the graphs. When the parameter β increases, for a specific value of M ,

it is observed that the relative pressure also increases almost all over the flow field except a region close to

the stretching sheet (0 ≤ η . 0.2) where the opposite happens. It is noted that the decrement of the relative

dimensionless P1 is almost one order of magnitude for M = 5 close to the area of magnetic field.

Figure 5: Variation of the dimensionless pressure P2(η)

Fig. 5 shows the variation of the dimensionless pressure P2 with the magnetic parameters M and β. A

general observation is that the variations of P2 are limited close to the stretching sheet and for 0 ≤ η . 0.5.

It is obtained that this time the important parameter for the increment of P2 is β. For a specific value of

β increment of M results to further small increment of P2. The curve for M = 0, β = 5 is similar to the

corresponding one obtained in the aforementioned previous studies [17, 18].

Figure 6: Variation of the dimensionless wall shear parameter −f ′′(0): (A) with β, (B) with M .
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Figure 7: Variation of the dimensionless relative wall pressure ∆P1(0): (A) with β, (B) with M .

Another important parameters investigated in stretching sheet problems are the dimensionless wall shear

parameter f ′′(0) and the dimensionless wall heat transfer parameter Θ∗(0). These parameters are related to

the local skin friction coefficient and the local rate of heat transfer respectively [18]. The variation of −f ′′(0)

is shown at figs 6(a) and 6(b). The increment of β leads to linear increment of −f ′′(0). The line for M = 0 is

similar to corresponding one obtained in previous studies [17, 18]. Moreover, further increment is observed if

M increases for a specific value of β. The increment of −f ′′(0) with M is not linear and is depicted at fig. 6(b).

Increment of either M or β result to almost equivalent significant increment of −f ′′(0) .

Figures 7(a) and 7(b) show the variation of the dimensionless relative wall pressure ∆P1(0) with β and

various values of M and with M for β = 0, 5 and 10, respectively. The relative wall pressure ∆P1(0) reduces

linearly with the increment of β. It is apparent from Fig. 7(b) that the reduction of ∆P1(0) is much greater

with the increment of M than that caused by the increment of β. On the other hand from Fig. 8 it is obtained

that the dimensionless wall pressure P2(0) increases linearly with the increment of β and the increment of

M does not have significant effects in the flow field. The line for M = 0 is similar to the corresponding one

obtained in the aforementioned previous studies [17, 18].

Figure 8: Variation of the dimensionless wall pressure P2(0) with β.

Figure 9: Variation of the wall heat transfer parameter Θ∗(0): (A) with β (B) with M

Another interesting parameter for the study of the thermal problem is the so called coefficient of the

heat transfer rate at the wall (sheet) which is independent of the distance ξ and is defined by the ratio

Θ∗(0) = Θ′
1(0)

Θ′
1(0)|M=β=0

. The variation of the wall heat transfer parameter Θ∗(0) with β and M is shown at

Figs. 9a and 9b. For the case of the variation with β pictured at Fig. 9a, Θ∗(0) reduces linearly. The reduction
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is greater comparable to the hydrodynamic case (M = β = 0) as M increases. Figure 9b shows the variation

of Θ∗(0) with M which for this case is not linear. It is generally obtained that the increment of M or β results

to similar amount of reduction for this parameter. The maximum rate of heat transfer at the wall is attained

for β = 10 and M = 5. The line for M = 0 at fig 9a is similar to the corresponding one obtained in previous

study [17, 18].

6. Conclusions

For the problem of the BFD flow over a stretching sheet it is concluded that the electrical conductivity and the

polarization of the fluid are both determining factors of the flow field. The dimensionless velocity of the fluid

over the stretching sheet is reduced by the application of the magnetic field. This reduction is caused almost

exclusively from the electrical conductivity whereas the reduction caused by the polarization is negligible.

Analogous behavior is observed for the dimensionless temperature Θ1. The effect of the electrical conductivity

of the fluid prevails over the one caused by the polarization effect on the values of the dimensionless relative

pressure ∆P1 whereas the opposite is true for the dimensionless pressure P2. As far as the very important

characteristics of the flow on the stretching sheet are concerned the dimensionless wall shear parameter −f ′′(0)

is almost equally affected by the variation of M or β. Increment of β results to increment of −f ′′(0). On the

other hand the electrical conductivity plays the dominant role in the variation of dimensionless relative wall

pressure ∆P1(0) which reduces as M increases. Moreover, the dimensionless wall pressure P2 is not affected

by the increment of M and increases linearly with the increase of β. The coefficient of the heat transfer rate

at the wall (sheet) Θ∗(0) decreases with the increase of β and/or M . The polarization has less, nonetheless

significant effect on the variation of Θ∗(0) than the electrical conductivity of the biofluid. Overall, the adoption

of the extended BFD model combining the principles of MHD and FHD is necessary to be adopted for the

study of stretching sheet problems since for the values of the parameters used both electrical conductivity and

polarization play important role in the formation of the flow field.
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