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Abstract 

 

    The fundamental problem of the turbulent flow of a biomagnetic fluid (blood) between two parallel 

plates under the action of a localized magnetic field is studied. The blood is considered to be an 

electrically conducting, incompressible and Newtonian fluid and its flow is steady, two-dimensional 

and turbulent. The turbulent flow is described by the Reynolds Averaged Navier-Stokes (RANS) 

equations. For the numerical solution of the problem under consideration, which is described by a 

coupled and non linear system of PDEs, with appropriate boundary conditions, the stream function-

vorticity formulation is used. For the eddy-kinematic viscosity, the low Reynolds number k-ε 

turbulence model is adopted. The solution of the problem, for different values of the dimensionless 

parameter entering into it, is obtained by developing and applying an efficient numerical technique 

based on finite differences scheme. Results concerning the velocity and temperature field, skin 

friction and rate of heat transfer, indicate that the presence of the localized magnetic field, appreciable 

influences the turbulent flow field. A comparison is also made with the corresponding laminar flow, 

indicating that the influence of the magnetic field decreases in the presence of turbulence. 
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1. Introduction 

 

In the last decades there is an increasing research activity concerning the use of the magnetic field 

in Biomechanics and Biomedicine applications. The use of the magnetic field seems to constitute an 

attractive prospect since it has been proposed for various non-invasive therapeutic techniques. Among 

the most popular applications, there are some concerning biocompatible magnetic nanoparticles, that 

may be used as a delivery system for anticancer agents in localized tumor therapy, called “magnetic 

drug targeting” [1]~[5]. Applications concerning the use of magnetic field are also proposed for cell 

separation [6], for therapy, such as hyperthermia or anticancer treatment [7], [8] and for the 

development of medical devices, such as blood pumps [9].   

Among these studies there is a category concerning the study of the influence of the magnetic field 

on the flow of biological fluids. The biofluids, the flow of which is affected by the application of the 

magnetic field, are called biomagnetic fluids. One of the most interesting biomagnetic fluids is blood. 

The magnetic behavior of blood has been studied in several studies. This magnetic behavior appears 

due to the erythrocytes, which orient with their disk plane parallel to the magnetic field [10] ~ [14]. In 

fact, blood itself behaves like a diamagnetic material when oxygenated and paramagnetic when 

deoxygenated [15].  

The effect of the magnetic field on pure blood is very weak and in order to affect its flow, strong 

magnetic fields are required. Thus, in several biomedical applications, such as magnetic drug 

targeting, artificially created magnetic nanoparticles are added to blood [16]. In that case, the effect of 

the magnetic field on blood flow increases dramatically as long as its magnetization increases several 

orders of magnitude. Consequently, blood with the addition of magnetic particles, except from 

paramagnetic or diamagnetic material, can be considered as a ferromagnetic fluid. 

The first formulation of Biomagnetic Fluid Dynamics (BFD), for the investigation of the flow of a 

biofluid under the influence of an applied magnetic field (biomagnetic fluid flow), has been 

developed by Haik et. al [17]. According to this formulation the biomagnetic fluid is actually 

considered to possess the magnetic properties of blood. The blood in that BFD formulation is 

considered as a homogeneous, Newtonian, electrically non-conducting magnetic fluid. Clearly, the 
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mathematical model of Haik et. al is valid for laminar blood flow in large vessels where the 

Newtonian behavior is a good approximation [18], [19]. Moreover, the BFD model is actually based 

on the one of FerroHydroDynamics (FHD) [20] ~ [26], which deals with no induced electric current 

and considers that the flow is affected by the magnetization of the fluid in the magnetic field [16], 

[17], [27]. 

However, blood also exhibits considerably high static electrical conductivity [28] ~ [30], due to 

the ions in the plasma. As the blood flows, electric current is generated and interacts with the 

magnetic field. Thus, the Lorentz force arises according to the principles of MagnetoHydroDynamics 

(MHD) [31] ~ [33]. This force depends on the magnetic field intensity itself (not gradient) and is 

considerable in areas where strong magnetic field is applied. Thus, an extended mathematical model 

of BFD, taking into account the electrical conductivity of blood, has been proposed in [34]. This 

model is derived by adopting the principles of both MHD and FHD and takes into account both 

magnetization and electrical conductivity of blood.  

The physical problem of the laminar biofluid (blood) flow in a channel, under the action of a 

strong localized magnetic field, using similar considerations as in [34], has been studied in [35]. The 

same physical problem, using a different kind of magnetic field and adopting the model of BFD 

proposed by Haik et. al [17], has also been studied in [36].  

Moderate and severe flow stenosis can produce highly disturbed flow regions with transitional 

and/or turbulent flow characteristics. Numerical investigations and experimental measurements 

showed that as the degree of stenosis is increased, and thus the disturbances in the flow domain 

become more intense, the critical Reynolds number is decreased. The flow, depending on the degree 

of stenosis, can become turbulent even for very low Reynolds numbers such that 230 or 300 [37] ~ 

[41].  The obtained results in various BFD flow problems showed that in all cases, the magnetic field 

causes the generation of strong vortices in the flow domain and effects similar to those generating in 

flow in stenotic vessels. Moreover, for some values of the parameters, the flow field is much more 

disturbed than that caused by a stenotic region [34] ~ [36]. Consequently, under such circumstances, 

the flow should be considered as turbulent even for low values of the Reynolds number.    
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 Hence, in this work, the fundamental problem of a biomagnetic fluid (blood) turbulent flow 

between two parallel plates under the action of a localized magnetic field is studied. Blood is 

considered to be an incompressible, Newtonian and electrically conducting fluid and its flow 

turbulent, two-dimensional and steady. A similar physical problem, for laminar flow, has already 

been investigated in [35]. The mathematical model used in the present work is the extended BFD 

model presented in [34] and the turbulent model used is the k-ε turbulent model for low Re numbers. 

For the numerical solution of the PDEs, describing the problem under consideration, the stream 

function-vorticity formulation is adopted. The solution of the problem is obtained, numerically, by 

developing and applying an iterative scheme, which constitutes a combination of the numerical 

techniques used and described in detail in [34], [35] and [36]. 

Results concerning the fundamental physical quantities of the turbulent flow field, indicate that the 

presence of the localized magnetic field, appreciable influences them. It is worth mentioning, that for 

special values of some parameters, the system of equations that governs the turbulent flow in the 

channel, becomes the one that governs the laminar flow studied in [35]. Consequently, for the 

purpose of comparison, results are also obtained for the case of laminar flow, similar to those 

obtained in [35]. The results concerning the velocity, indicate that the presence of magnetic field 

appreciably influence the flow field in the laminar as well as in the turbulent flow. The major effect 

on the flow is the formation of two vortices in the area of the application of the magnetic field. The 

temperature is also increasing within the area where the magnetic field is applied. The influence of 

the magnetic field significantly reduces in the presence of turbulence. 

2. Mathematical Formulation 

 

  The viscous, steady, two-dimensional, incompressible, turbulent biomagnetic fluid (blood) flow is 

considered taking place between two parallel flat plates (channel). The length of the plates is L  and 

the distance between them is h . The flow at the entrance is assumed to be fully developed and the 

upper plate is kept at constant temperature uT , whereas, the lower at temperature lT , such that lT < uT . 

The origin of the Cartesian coordinate system is located at the leading edge of the lower plate (see 

Figure 1). 
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For the fluid (blood) flow the following assumptions are made. The blood is considered to be an 

electrically conducting biomagnetic Newtonian fluid. The flow is considered to be turbulent and the 

increment of the viscosity due to the magnetic field is considered to be negligible. Also, the rotational 

forces acting on the erythrocytes, when entering and exiting the magnetic field are discarded 

(equilibrium magnetization). The assumption of equilibrium magnetization, even though is a 

considerable simplification, is a valid assumption for blood [27]. The walls of the channel are 

assumed electrically non-conducting and no electric field is applied. 

The flow is subject to a locally applied magnetic field, which acts in the region of the interval 

defined by the points 1(x ,0)  and 2(x ,0) . The magnetic field strength intensity H  is considered to be 

independent of y and is given by the expression [35]

 0
1 1 2 2

HH(x)  (tanh[a (x-x )] - tanh[a (x-x )])
2

= , (1) 

where 0H  is the magnetic field strength at the point ( )0 1 2x x x /= + 2 , ( 0 0B H= μ 0 ) and the 

coefficients a1 and a2 determine the magnetic field gradient at the points 1x  and 2x , respectively (see 

Figure 1). 

For the magnetization M , the following equation is used, involving the magnetic intensity H  and 

the fluid temperature T . That is   

 ( cM KH T T= − ) .  (2) 

where K  and cT  are constants [34]~[36] and [42].  

Following these considerations, as the biofluid enters (area of 1x  point) and leaves (area of 2x  

point) the region where the locally applied magnetic field acts and where the gradient of the magnetic 

field strength is high, the force due to magnetization, as well as the Lorentz force, arise. In the 

aforementioned area the magnetization force is expected to prevail and the Lorentz force is negligible. 

In the region where the magnetic field is almost uniform (area of 0x  point), the Lorentz force prevails 

and the magnetization force becomes zero. Due to the way the magnetic field is applied, the gradient 

of the magnetic field strength exists only along the x  direction, whereas it is zero along the y  

direction.  
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For the turbulent flow formulation, it is necessary to replace in the Navier Stokes equations, the 

instantaneous quantities by the sum of their mean value and fluctuating parts, e.g. for a dimensional 

quantity f  it is written f f f ′= + . Hereafter, the mean values of the derived equations are 

considered. Finally, for the turbulent flow in the channel, the governing equations are the Reynolds 

Averaged Navier-Stokes equations (RANS), plus the additional terms of MHD and FHD [34], [35], 

expressing the influence of the applied magnetic field. Under these circumstances the equations 

governing the flow under consideration are: 

 

 u v 0
x y
∂ ∂

+ =
∂ ∂

,  (3)

 
( )2 2

2
0 2 2

u vu u p H u uu v M B u
x y x x yx y

′ ′∂⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
ρ + = − +μ −σ +μ + − ρ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

, (4) 

 
( )2 2

2 2

u vv v p v vu v
x y y xx y

′ ′∂⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
ρ + = − +μ + − ρ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

,  (5) 

        

 

( ) ( )

( ) ( )

p 0

2 2
2

02 2

T u T vT T H H c u v KHT u v
x x y y x y

T T H H                           k KH u T v T Bu .
x yx y

⎛ ⎞′ ′ ′ ′∂ ∂ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟ρ + + + −μ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′ ′ ′ ′= ⎜ + ⎟ + μ + + σ⎜ ⎟⎜ ⎟ ∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

 (6) 

The boundary conditions are: 

 

Inflow conditions  ( x 0= , 0 y h≤ ≤ ) :         u u(y)= , v 0= , (y)Τ = Τ    

Outflow conditions  ( x L= , 0 y h≤ ≤ ) :        (R) / x 0∂ ∂ =  

Upper plate ( y h= , 0 x L≤ ≤ ) :        u 0= , v 0=  , uT T=  

Lower plate ( y 0= , 0 x L≤ ≤ ) :    u 0= , v 0=  , lT T=  
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  For the derivation of the above equations, terms containing the mean value of a fluctuating 

quantity, e.g. f ′ , as well as the terms of the form 2f ′  have been considered equal to zero. 

In the above equations u  and v  are the mean values of the dimensional velocity components of the 

fluid in x  and y  direction, respectively, T  is the mean value of temperature and  p  of pressure. ρ  is 

the biomagnetic fluid density, μ  is the dynamic viscosity, oμ  is the magnetic permeability of 

vacuum, σ is the electrical conductivity of biofluid, pc  is the specific heat at constant pressure, k  is 

the thermal conductivity,  H  is the magnetic field strength, B  is the magnetic induction ( oB = μ Η ). It 

is reminded that the bar above the quantities denotes that they are dimensional. On the other hand 

u(y)  is a parabolic velocity profile corresponding to fully developed flow, (y)Τ  is a linear profile and 

R  stands forΤ , u  or v . 

The term oM H xμ ∂ ∂  in (4), represents the component of the magnetic force, per unit volume, and 

depend on the existence of the magnetic gradient.  

The terms ( ) ( )0 0
H H H HKHT u v ,  KH u T v T
x y x y

⎛ ⎞ ⎛∂ ∂ ∂ ∂′ ′ ′ ′μ + μ +⎜ ⎟ ⎜
⎞
⎟∂ ∂ ∂⎝ ⎠ ⎝ ∂ ⎠

 in equation (6), represent the thermal 

power per unit volume, due to the magnetocaloric effect. These two terms are widely used in FHD 

[20] ~ [26]. 

The term 2B uσ  appearing in (4), represents the Lorentz force, per unit volume, and is arising due to 

the electrical conductivity of the fluid, whereas the term 2Buσ  in (6) represents the Joule heating. 

These two terms arise in MHD [31] ~ [33]. 

For the dimensionless eddy kinematic viscosity mε  and for the turbulent Prandtl number Prτ  the 

following expressions are used: 

 m /τε = ν ν , u vu v
y xτ

⎛ ⎞∂ ∂′ ′− = ν +⎜ ⎟∂ ∂⎝ ⎠
 (7) 

  and 

 TT v
Pr y

τ

τ

ν ∂′ ′− =
∂

  TT u
Pr x

τ

τ

ν ∂′ ′− =
∂

 (8) 

where, τν is the turbulent kinematic viscosity and ν  is the kinematic viscosity [43]. 
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Substituting the above quantities into equations (3)~(6), using the continuity equation and 

discarding the notation for the mean value above the quantities, the equations finally become: 

 

 u v 0
x y
∂ ∂

+ =
∂ ∂

  (9)

 ( ) ( )20
m m

1 u u 1 p H v uu v M B u 1 1
x y x x y x y

μ⎛ ⎞ ⎛∂ ∂ ∂ ∂ σ ∂ ∂ ∂
+ = − + − + ε − + ε +⎜ ⎟ ⎜ν ∂ ∂

⎞
⎟ρν ∂ μ ∂ μ ∂ ∂⎝ ⎠ ⎝ ∂ ⎠

, (10) 

 ( ) ( )m m
1 v v 1 p v uu v 1 1

x y y x x y
⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂

+ = − + ε + + ε −⎜ ⎟ ⎜ν ∂ ∂
⎞
⎟ρν ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

,  (11) 

        

2
p 0

2m m m
p p 0

c KHT T H Hu v T u v
x y x y

1 T 1 T T H T H      c c KH Bu .
x Pr Pr x y Pr Pr y Pr x x y yτ τ τ

ρ ⎛ ⎞ ρμ ⎛ ⎞∂ ∂ ∂ ∂
+ − +⎜ ⎟ ⎜ ⎟μ ∂ ∂ μ ∂ ∂⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= ρ + + ρ + −μ + + σ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (12) 

 

The boundary conditions are: 

 

Inflow conditions  ( x 0= , 0 y h≤ ≤ ) :         u u(y)= , v 0= , (y)Τ = Τ    

Outflow conditions    ( x L= , 0 y ) :        h≤ ≤ (R) / x 0∂ ∂ = , 
(13) 

Upper plate ( y h= , 0 x L≤ ≤ ) :        u 0= , v 0=  , uT T=  

Lower plate ( y 0= , 0 x L≤ ≤ ) :    u 0= , v 0=  , lT T=  

 

 

3. Transformation of equations 

 

  In the system of  (9)~(12) with boundary conditions (13) and the assumptions (1) and (2), the 

following non dimensional variables are introduced 

 
xx
h

= ,  yy
h

= ,  
r

uu
u

= ,  
r

vv
u

=  2
r

pp
u

=
ρ

, 
o

HH
H

= , l

u l

T T
T

T T
−

=
−

, (14) 

where ru is the maximum velocity at the entrance.  
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For the numerical solution the stream function-vorticity formulation is adopted by introducing the 

dimensionless vorticity function J=J(x,y) and the dimensionless stream function Ψ=Ψ(x,y) defined by 

the expressions 

 ( ) vJ x, y   
x y

u∂ ∂
= −
∂ ∂

, (15) 

 u
y

∂Ψ
=
∂

,  v
x

∂Ψ
= −

∂
. (16) 

Thus, equation (9) is automatically satisfied and equations (10), (11) and (12) produce, by eliminating 

the pressure p from the first two and substituting (16) in (12) and (15), the following system of 

equations 

 

2 J∇ Ψ = −     (17) 

( )

2 m m

2 24 3 3 2
m m m m

2 2 2 2 2 2 2 2

2
2

F M 2

2 J J Re J JJ
B x x y y B x y y x

1   - 2 A B 4
B y xx y x y x y x y y x

H T          Mn Re H +Mn H
x y y

⎧ ⎫ ⎧ ⎫∂ε ∂ε∂ ∂ ∂ ∂Ψ ∂ ∂Ψ
∇ + + − − =⎨ ⎬ ⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭
⎡ ⎛ ⎞⎛ ⎞ ⎛∂ε ∂ε ∂ ε ∂ ε∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ

+ + + + − −⎢ ⎜ ⎟⎜ ⎟ ⎜∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠ ⎝⎝ ⎠⎣
⎤∂ ∂ ∂ Ψ

+ ⎥∂ ∂ ∂ ⎦

2 ⎞
⎟
⎠  (18) 

2 0 0

0 0

2
2m M

F F
0 0

A A1 T T Re T TT
A x x y y A x y y x

Mn EcH H T      Mn Re Ec H ( T) + Mn EcH - H
x y Pr A x x A yτ

∂ ∂⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂Ψ ∂ ∂Ψ
∇ + + − − =⎨ ⎬ ⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎛ε∂ ∂Ψ ∂ ∂ ∂Ψ
= − θ+ ⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎝

⎞

⎠
 (19)

 
where  is the two dimensional Laplacian operator (2∇ ( )2 2 2 2/ x / y∇ = ∇⋅∇ = ∂ ∂ + ∂ ∂ 2 ) and 

 ,  ,  mA 1= ε − mB 1= ε + m
0

1A
Pr Prτ

ε
= + . (20)

    
 

The non-dimensional parameters entering into the problem under consideration are 

 rh u
Re

ρ
=

μ
 (Reynolds number),    

2
r

p u l

u
Ec

c (T T )
=

−
(Eckert number),  

 l

u l

T
T T

θ =
−

(Temperature parameter),  pc
Pr

k
μ

= (Prandtl number), 
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2

o o u l
F 2

r

H K(T T )
Mn

u
μ −

=
ρ

(Ferromagnetic (FHD) parameter), 

 
2 2 2
o o

M
H h

Mn
μ

=
μ

σ (Magnetohydrodynamic (MHD) parameter). 

The most important parameters entering to the problems of BFD are the two magnetic parameters, 

MnF and MnM, defined above. Especially, the MnM parameter is the square of the widely known in 

MHD Hartmann number [31] ~ [33]. Increment of the above mentioned dimensionless parameters, 

for a specific fluid ( , σ, , μν ρ o = const) and for a specific flow problem ( h =const) means increment 

of the magnetic field strength induction .  oB

It is worth mentioning here, that when these magnetic parameters MnF = MnM = 0 the problem is a 

common hydrodynamic channel flow with heat transfer. For a specific Reynolds number and 

temperature difference, an increase in the values of these magnetic parameters means a corresponding 

increase in the value of the magnetic field strength, H0.  

For εm=0 and Prt=1 the system of equations (17) ~ (19), which governs the turbulent flow in the 

channel, becomes the one that governs the laminar flow in the channel studied in [35].  

 

 

3.1 Boundary Conditions 

 

For the solution of the system of equations (17) ~ (19), boundary conditions are required for the 

unknown functions Ψ, J and T. The boundary conditions for Ψ are implemented from (16), since the 

velocity components are known (fully developed flow at the entrance and no slip conditions on the 

plates). Considering equations (14) and (16) the value of Ψ at the entrance is calculated to be 

, ( ).  2 3(0, y) 2y (4 / 3)yΨ = − 0 y 1≤ ≤

The dimensionless temperature T at the plates is also easy calculated from (14). It is additionally 

assumed that in the entrance of the channel T is varying linearly and is given by the 

expression T( . 0, y) y=
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At the exit of the channel all unknown quantities are assumed to be independent on x ( , 

where R stands for Ψ, J or T). Thus, the outflow conditions for all quantities are determined from the 

interior grid points of the computational domain using second order backward finite differences. 

R / x 0∂ ∂ =

However, in order to solve the vorticity transport equation (18) it is also necessary to determine 

boundary conditions of the vorticity J and this is not an easy task. For the derivation of boundary 

conditions of J on the solid surfaces (plates), numerical boundary conditions are constructed, using 

the stream function Ψ, as described in detail in [35] and [36]. 

The vorticity at the boundary point (i,m) (see Figure 2), provided that the borders are still (u=v=0), 

is calculated from the formula.  

 
( )

( )
( )

(i,m i 1,m 1 i,m 1 i 1,m 1 i,m 2 i,m 12 2

1 2J 2
x 3 y

+ − − − − − −= − Ψ − Ψ +Ψ − Ψ −Ψ
Δ Δ

)  (21) 

Summarizing the above, the boundary conditions used for the problem under consideration are 

 

Inflow conditions  ( , ) :        , x 0= 0 y 1≤ ≤ 2 32y (4 / 3)yΨ = − J 8y 4= − ,  ,  yΤ =

Outflow conditions    ( , ) :   x L / h= 0 y 1≤ ≤ (R) / x 0∂ ∂ = , where R=Ψ, J or T, 
(22) 

Upper plate ( , ) :   ,  J as in y 1= 0 x L / h≤ ≤ 2 / 3Ψ = (21), T 1= ,  

Lower plate ( , ) :   y 0= 0 x L / h≤ ≤ 0Ψ = ,  J as in (21),  T 0= .  

 

 

3.2 Turbulence model  

 

 As it is already mentioned, it has been observed that the blood flow becomes turbulent under certain 

situations, like the presence of stenosis that result to a highly disturbed flow field [37]~[41]. For the 

biomagnetic (blood) channel flow [34] ~ [36], it has been observed that the application of a magnetic 

field results also to high disturbances in the flow field. Moreover, the appearing disturbances in 

biomagnetic fluid flow field are obviously more intense that the analogous appearing for example in 
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stenotic regions, especially in the case of application of strong magnetic fields (high magnetic 

parameters).  

The Re numbers appearing in biomagnetic fluid flow problems are generally low. Hence, in order 

to study, numerically, the turbulent flow of the problem under consideration the low Reynolds 

number k-ε turbulence model is employed. This model takes into account the effects of the viscous 

sub layer. Generally, in the case of the low Reynolds number k-ε turbulence model, extra terms and 

modified constants have been added to the standard k-ε model, so that this model is also applicable in 

the low Re ranges. A variety of low Re k-ε turbulence models have been proposed by different 

researchers. In the present study, the low Re k-ε turbulence model proposed in [44] is used.         

Thus, the rate of turbulent dissipation ε and the turbulent kinetic energy k are given by the solution 

of the system of equations 

2
m m

m
k k

k k k k uu v
x y x x y y y

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪+ = ν + + ν + + ε − ε +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ σ ∂ ∂ σ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
D , (23) 

2 2
m m

1 m 1 2 2
uu v C f C f

x y x x y y k y kε ε

⎧ ⎫⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε ε∂ε ∂ε ∂ ∂ε ∂ ∂ε ε ∂ ε⎪ ⎪ ⎪⎪+ = ν + + ν + + ε − +⎨ ⎨ ⎬⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ σ ∂ ∂ σ ∂ ∂⎪ ⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎩ ⎭
E . (24) 

The eddy cinematic viscosity  is given by the following relation   mε

 
2

m
kC fμ με =
ε

 (25) 

In the above relations 

1C 1.55= , , C1f 1.0= 2 2.0= , ( )2
2 tf 1.0 0.3exp R= − − μ, C 0.09= , 

t

2.5xp
1 R / 50μ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

f e , 
2

t
kR =
νε

, 

k 1.0σ = , σ = , 1.3ε

2
kD 2

y
⎛ ⎞∂

= − ν⎜ ⎟⎜ ⎟∂⎝ ⎠
, 

22

m 2

uE 2
y

⎛ ⎞∂
= νε ⎜ ⎟∂⎝ ⎠

.  

 

The boundary conditions for the above system of equations are: 

Inflow conditions  ( , 0 y )  : ε = k = 0 x 0= 1≤ ≤
(26) 

Outflow conditions    ( , ) : x L / h= 0 y 1≤ ≤ / x k / x 0∂ε ∂ = ∂ ∂ =  

Upper plate ( , ) and Lower plate (y 1= 0 x L / h≤ ≤ y 0= , 0 x L / h≤ ≤ ) :  ε = k = 0. 
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For the turbulent-Prandtl number  several expressions have been proposed. In most cases the 

turbulent-Prandtl number is considered constant. In this study a modification of the Kays and 

Crawford’s model is used 

Prt

[45], [46]. The  is given by the expression: Prt

 

 2
t t t

t t t t

1 1 1Pr 1/ 0.3Pe (0.3Pe ) 1 exp
2Pr Pr 0.3Pe Pr

∞ ∞ ∞

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎜= + − − −⎨ ⎬⎜
⎟
⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

, (27) 

 

where  is the turbulent Péclet number, given by the relation tPe t mPe Pr= ε , and  is the value of 

turbulent-Prandtl number far from the wall 

tPr
∞

[45]. 

 

4. Numerical method 

 

The  physical problem under consideration, is described by the system of equations (17) ~ (19), (23)

~(24) subject to the boundary conditions (22) and (26) for the unknown quantities Ψ, J, T, k and ε. 

The quantities  and  are evaluated from equations mε tPr (25) and (27), respectively. This system is 

coupled and non-linear and an iterative procedure is developed and applied for its numerical solution.  

In order to solve, numerically, the system of equations (17)~(19) subject to the boundary conditions 

(22), an efficient and robust technique has been used, similar to the one used and described in detail 

in [35] and [36]. The aim of the numerical technique used, for these equations, is to force the 

coefficients matrices of the unknowns to become diagonally dominant, so as the corresponding 

equations (18) and (19) will be amenable to solution by iterative methods (i.e. S.O.R or L.L.I.M.).  

For the numerical solution of the equations (23)~(24) subject to the boundary conditions (26) a 

pseudo transient technique is employed. According to this technique the time derivatives of k and ε 

( , ) are added to the corresponding equations (23) and (24). The time plays the role of an 

iteration parameter and the solution for each time step represents the calculated solution for an 

k / t∂ ∂ / t∂ε ∂
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iteration step. The solution of (23) and (24) is finally attained by calculating the steady state. The 

general philosophy of this technique is also demonstrated in [34].   

For the solution of the whole system (17)~(19), (23)~(24) an iterative scheme is developed using 

the above mentioned numerical techniques. 

The steps of this iterative numerical scheme are: 

 

• Give initial guesses for Ψ, J and T for the interior points of the computational domain and the 

boundary conditions. 

• Calculate a new estimation for Ψ by solving (17) once, considering J known. 

• Considering Ψ known construct the boundary conditions for J using (21). 

• Calculate a new estimation for J by solving (18) using the L.L.I.M., considering Ψ, T known. 

• Considering now Ψ and J known, calculate a new estimation for T using the L.L.I.M. for (19). 

• Calculate a new estimation for k and ε by solving (23) and (24) 

• Calculate εm and Prt from (25) and (27), respectively. 

• Compare the new estimations of Ψ, J and T with the old ones. If the criterion of convergence is 

not satisfied set the new estimations as old and return to the second step. 

 

The criterion of convergence used is  

 
M N

n 1 n
i, j i, j

i 1 j 1

1 F F
MN

+

= =

− <∑∑ e  

where, M and N are the number of grid points towards the x and y direction, respectively, with step 

size Δx and Δy.  is an estimation of an unknown function F (Ψ, J or T) at the grid point (i,j), at the 

n iteration. For the problem under consideration e was taken e=5

n
i, jF

× 10-5.  

 

 

5. Results 
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For the numerical solution it is necessary to assign values in the dimensionless parameters entering 

into the problem under consideration. For these values, in order to be realistic, a similar case scenario 

to the one adopted in [34] and [36] is considered, in which the fluid is the blood ( 31050Kgr m−ρ = , 

3 -13.2 10 kgr m  sec−μ = × -1 ) [49], flows with maximum velocity 2
ru 1.22 10 m sec−= × -1  and the plates 

are located at distance 2h 5.0 10 m−= × . In this case the Reynolds number, Re, is equal to 200. The 

temperature of the plates is o
uT 42 C=  and o

lT 10.5 C= . For these values of plate temperatures the 

temperature parameter θ  is equal to 9. 

As far as the electrical conductivity of blood for a stationary state is concerned, it was measured to 

be -10.7 s mσ =  [30]. The electrical conductivity of flowing blood is always greater than that of the 

stationary. The increment for medium shear rates is about 10% and increases with the increment of 

the hematocrit [28]. In the present study the electrical conductivity of blood is assumed, for 

simplicity, temperature independent and equal to . -10.8 s m

Although the viscosity μ , the specific heat under constant pressure pc  and the thermal conductivity 

k  of any fluid, and hence of the blood, are temperature dependent, Prandtl number can be considered 

constant. Thus, for the temperature range considered in this problem, the value of pc  and k  is equal 

to 14.286 Joule kgr-1 oK-1 and 1.832×10-3 Joule m-1 sec-1 oK-1, respectively [50], and hence it can be 

considered that Pr=25. For these values of the parameters the Eckert number is Ec=3.30×10-7. 

The magnetic parameter MnF can be written as 

 
2

o o u l o o o u l
F 2 2

r r

H K(T T ) H KH (T T ) BMMn
u u

μ − μ −
= =

ρ ρ 2
ru

=
ρ

,  (28) 

where B  and M  are the magnetic induction and the magnetization, respectively. For magnetic field 

equal to 10 Tesla, the blood has reached magnetization of 40A m-1 [27]. 

From the definition of the Reynolds number it is also obtained that 1 1
ru Re h− −= μ ρ  and 

substitution of this relation to (28) gives 

 
2

F 2 2

BMhMn
Re

ρ
=
μ

 (29) 

From equation (29) and from the definition of the magnetic parameter MnM it is obtained that 
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6

F
2 2

M

Mn M 2.051 10
Mn B Re Re

ρ ×
= ≈
μ σ

  (30) 

Thus, for the problem under consideration the MnF is determined from equation (29) and the 

corresponding MnM is determined by (30). Representative values of the two magnetic parameters for 

Re=200 are given in Table I. As it can been seen from this table the corresponding to 10 Tesla 

magnetic field values of the magnetic parameters are MnF ≈ 2563.48 and MnM ≈ 62.5. 

The dimensionless length of the channel was chosen to be 13, the magnetic field is applied between 

the points x1=3.5, x2=8 and the parameter a1=a2=4 (see Fig 1). The present results were obtained for a 

number of grid points equal to M×N = 450×35 at the x and y direction, respectively, i.e. 16,200 grid 

points. Calculations were made also for 320×30, i.e. 9,600 grid points and 520×45, i.e. 23,400 and 

no significant differences were found.  

It is worth mentioning here, that for εm=0 and Prt=1, the system of equations (17)~(19) that governs 

the turbulent flow in the channel, becomes the one that governs the laminar flow studied in [35]. 

Thus, the physical problem of the laminar flow investigated in [35] is actually a special case of the 

problem investigated in the present study. Consequently, results are also obtained for the case of 

laminar flow by setting εm=0, Prt=1, the dimensionless length of the channel equal to 18, the number 

of grid points 730×35 i.e. 25,550 and for the same values of the rest of the dimensionless parameters 

entering into the problem under consideration (MnF, MnM, Re, Pr, etc.). These results are similar to 

those obtained in [35].  

Figs. 3 and 4 show the stream function contours for the values of the above mentioned parameters 

for various magnetic numbers for turbulent (Fig. 3) and laminar (Fig. 4) flow, respectively. The 

dimensionless distance x is indicated on the axis at the bottom of  the figures and the vertical dashed 

lines indicate the entrance, the exit of the duct and the positions x1 and x2 between of which the 

magnetic field is applied (see Fig. 1). The values of the magnetic parameters are increased (namely 

the applied magnetic field) from the top to the bottom of each figure. It is observed, from both 

figures, that the primary effect of the applied magnetic field, is the formation of two vortices at the 

area of the points x1 and x2. The first vortex rotates counter clockwise, whereas the second one 

clockwise. From direct comparison of the two figures it is easily apparent that the effect of the 
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magnetic field in the case of the laminar flow is much stronger than that of the turbulent one. The two 

vortices in the case of the turbulent flow (Fig. 3) are formed for moderate and relatively high 

magnetic fields and only in the area of the points x1 and x2. For relatively weak magnetic fields only a 

disturbance is raced at the points x1, x2. In the laminar case (Fig. 4) other vortices are formed between 

the points x1, x2 and downstream the x2 point. In this case the aforementioned vortices are arising 

even for relatively weak magnetic fields. The length of the duct is considered smaller in the turbulent 

case due to the fact of the reduced effect on the flow. Results analogous to the laminar case have been 

extensively discussed in [35].  

The vorticity function contours for the turbulent and laminar flow are shown in Figs 5 and 6, 

respectively, for the aforementioned values of the parameters. It should be remarked that in the 

absence of the magnetic field (MnM=MnF=0) the stream function as well as the vorticity function 

contours are straight lines.  

The profiles of the dimensionless velocity component u, for the turbulent flow, along specific 

locations in the channel are shown in Fig. 7. The profile at x=0 is the laminar one imposed to the 

entrance and from the profiles at x= 3.5 and 8 it is obtained that the first vortex rotates counter 

clockwise, whereas the second one clockwise. The flow field at the x=5, between the two vortices, 

does not seem to be disturbed so significantly as in the corresponding laminar case pictured in Fig. 4. 

Finally, the u velocity profile at the exit (x=13) is reverted to the characteristic profile for the 

turbulent flow. This last profile (at x=13) is pictured in conjunction with the laminar profile at the 

entrance.  

Fig 8 shows the dimensionless temperature contours for the greatest and the smallest values of the 

magnetic parameters considered in the previous cases. For each magnetic parameter, two temperature 

contours are shown, one corresponding to the laminar flow and the other to the turbulent one. It is 

apparent that for the turbulent flow, the effect of the application of the magnetic field on the 

temperature, irrespective its strength is almost insignificant and is restricted close to the points x1 and 

x2. On the contrary, the effect of the magnetic field on the temperature field is significant for the 

laminar flow and the disturbances are propagating all over the flow field even very far downstream 
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the x2 point (x=18). Detailed discussion for the temperature field of the laminar flow has been given 

in [35].  

The most important flow and heat transfer characteristics are the local skin friction coefficient and 

the local rate of heat transfer coefficient expressed by the Nusselt number. These quantities can be 

defined by the following relations 

 

 l
f 2

r

2C
u
τ

=
ρ

 and 
u l

qhNu
k(T T )

=
−

 (31) 

where l y 0 or  h
( u / y)

=
τ = μ ∂ ∂  is the wall shear stress and 

y 0 or  h
q k( T / y)

=
= − ∂ ∂  is the rate of heat flux 

between the fluid and the plates. 

By using (14)~(16), the above mentioned quantities can be written as 

 

 f
y 0 or 1

2 "(x, y)C
Re =

Ψ
=  and 

y 0 or 1
y 0 or 1

TNu T '(x, y)
y =

=

∂
= =
∂

 (32) 

 

where Nu is the Nusselt number, 
y 0 or 1

"(x, y)
=

Ψ  is the dimensionless wall shear parameter and 

y 0 or 1
T (x, y)

=
′  is the dimensionless wall heat transfer parameter. 

The variation of the dimensionless wall shear parameter, for the turbulent flow, for the lower (y=0) 

and the upper wall (y=1) are shown in Figs. 9 and 10, for MnF=2563.48, 1281.74, 512.69 and for 

corresponding MnM=62.5, 15.62 and 2.5, respectively. For both lower and upper wall and for all the 

magnetic parameters two major extremum appear in the flow field. The first one is a maximum just 

after the point x1(=3), whereas, the second one is a minimum just before the point x2(=8). It is 

remarkable that the variation of the dimensionless wall shear parameter (skin friction coefficient) is 

qualitatively the same irrespectively the plate (lower or upper) and the applied magnetic field 

(magnetic parameter). For the lower plate also, an increment of the skin friction is observed in the 

entrance of the channel (0<x<1) due to the development of the turbulent flow since the imposed 

initial profile is the laminar one. Analogous behavior is observed for the upper plate with a decrement 

taking place at the entrance. Far downstream the skin friction for both cases, takes the value attained 
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after this variation in the entrance (x ≈ 0.6). It is also obvious that the increment of the magnetic field 

strength results to greater variations of these parameters all over the flow field. The important 

information that can be extracted is the points where the wall shear parameter takes its maximum, 

minimum and zero values. In the extremum points the wall shear parameter (and consequently the 

skin friction) is maximized, whereas, is zero in the x points where the skin friction becomes zero. The 

change of the sign also, denotes anastrophe of the flow. These results may be interesting in the case of 

creation or reduction of fibrinoid. 

Figs 11 and 12 show the variation of the wall shear parameter of the lower and upper plate, 

respectively. The results, for each wall, are presented for Re=200, MnF=2563.48, and MnM=62.5 and 

for the laminar and turbulent flow. From these figures it is apparent that the variation of the lower 

wall shear parameter for the laminar flow is much greater than that of the turbulent one, especially in 

the region of the points x1 and x2. The interesting result, which can be obtained from the 

magnification on the right-hand side of the Fig. 12, is that the skin friction for the turbulent flow has 

greater values than that of the laminar one along the lower plate, except the region of the two points 

x1 and x2. At the region of the point x1, and specifically from x≈2.25, the skin friction for the laminar 

flow begins to increase rapidly and overcomes the skin friction of the turbulent flow until the point 

x 4 where a rapid decrement takes place and the skin friction of the laminar flow becomes again less 

than that of the turbulent one. At the region of the point x

≈

2, and from x≈7.25, the skin friction for the 

laminar flow begins to decrease rapidly and become much less than the skin friction of the turbulent 

flow until the point x 8.25, where a rapid increment takes place and the skin friction of the laminar 

flow becomes again greater than that of the turbulent one. At the point x

≈

≈9.75, the laminar skin 

friction becomes again lower than the corresponding turbulent one.  

An analogous behavior is observed for the skin friction of the upper wall pictured in Fig. 12. In that 

case, and from the magnification on the right-hand side of the Fig. 12, it is concluded that the skin 

friction for the turbulent flow is smaller than that of the laminar one for approximately 0<x 4.25 and 

for x 8.25. In the region of 4.25<x<8.25 the turbulent skin friction becomes greater than the 

corresponding laminar one.      

≤

≥
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Figs. 13 and 14 show the variation of the dimensionless wall heat transfer parameter, for the 

turbulent flow, for the lower and upper plate, respectively and for three different values of the 

magnetic parameters MnF=2563.48, MnF=1281.74 and MnF=512.69 with corresponding MnM=62.5, 

MnM=15.62 and MnM=2.5. For both plates, a rapid increment of the heat transfer takes place in the 

entry region of the plates justified from the development to the turbulent flow. For both plates also, 

the variation of the heat transfer parameter is made almost in the same way for the three different 

values of the magnetic parameters and two maximums are observed at the points x1 and x2.  

For the lower plate (Fig. 13) the global maximum, for all the aforementioned values of the magnetic 

parameters, is attained at the x1 point. Another disturbance in the dimensionless wall heat transfer 

parameter resulting in a second maximum, but much smaller than the previous one, appears in the 

point x2. For the upper plate analogous behavior for the dimensionless wall heat transfer parameter is 

observed, as it can be concluded from the Fig. 14, with the global maximum appearing this time at the 

x2 point. This behaviour of the dimensionless wall heat transfer parameter for the lower and upper 

plate is justified by the presence and the way of rotation of the vortices at the regions of the points x1 

and x2 (Fig. 3). Finally, downstream the point x2 the value of T′(x,0) or T′(x,1) (Figs. 13 and 14) reach 

their prior values attained just after the entrance of the channel once the turbulent flow has been 

developed.  

The dimensionless wall heat transfer parameter for Re=200, MnF=2563.48 and MnM=62.50 for the 

laminar in conjunction with the turbulent flow is given in Fig. 15 for the lower and in Fig. 16 for the 

upper plate, respectively. It can be generally concluded that the variations of the heat transfer 

parameter for both walls and for the laminar flow, are much more intended and complicated than 

those of the turbulent one. From Fig. 15 it is apparent that the heat transfer of the lower wall, is 

greater in the turbulent flow than the laminar one in the region 0<x<12 with an exception in the 

region 2.25<x<3, where a rapid increment takes place for the laminar flow and two other picks 

occurring at x 4.5 and 7.5. At approximately x=12 another rapid increment of the dimensionless 

wall heat transfer parameter for the laminar flow, takes place and for x>13 this parameter takes much 

greater values than the corresponding in the turbulent one. This latter behavior is justified because in 

the laminar flow (Fig. 8) a disturbance is generated in that area and is extended far downstream. 

≈
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Analogous behavior is observed for the dimensionless wall heat transfer parameter of the upper plate. 

Namely, the dimensionless wall heat transfer parameter, for the turbulent flow, is greater than that of 

the laminar one, for 0<x<8.5, with the exception at x=7, where the opposite is true (see the 

magnification on the right-hand side of Fig. 16). From approximately x=9 and downstream, the 

dimensionless wall heat transfer parameter in the case of laminar flow,  rapidly increases and 

overcomes the corresponding of the turbulent one. 

 

 

6. Conclusions 

 

   In the present study the turbulent biomagnetic fluid flow in a rectangular channel under the action 

of a localized magnetic field is studied. The fluid is considered to be electrically conducting and for 

the formulation of the turbulence, the low Reynolds number k-ε turbulence model is adopted. The 

major apparent effect from the application of the localized magnetic field is the formation of two 

vortices at the area of the points between of which the magnetic field is applied.  From the 

comparison of the results concerning the velocity and temperature field, between laminar and 

turbulent flow, it is apparent that the effect of the magnetic field significantly reduces by the presence 

of turbulence. However, the results concerning the velocity, temperature field, skin friction and rate 

of heat transfer at the walls of the channel, indicate that for the case of turbulent flow, the effect of the 

magnetic field remains significant. Moreover, in certain areas in the channel, the skin friction and the 

rate of heat transfer are greater in the case of turbulent flow than that calculated in the case of the 

laminar one. The above mentioned results indicate that the application of a magnetic field, in the flow 

of a biomagnetic fluid should be further studied for possible useful medical and engineering 

applications. 
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Caption of Figures 

 

Figure 1.  The flow configuration and the magnetic field  

 

Figure 2.  Grid points for the calculation of the boundary conditions for J 

 

Figure 3.  Stream function contours for various magnetic parameters for turbulent flow 

 

Figure 4.  Stream function contours for various magnetic parameters for laminar flow 

 

Figure 5.  Vorticity function contours for various magnetic parameters for turbulent flow 

 

Figure 6.  Vorticity function contours for various magnetic parameters for laminar flow 

 

Figure 7.  Profiles of the dimensionless velocity component u along specific locations in the 

channel for turbulent flow. 

 

Figure 8.  Dimensionless temperature contours for turbulent flow in conjunction with the laminar 

flow 

 

Figure 9.  Variation of the dimensionless wall shear parameter for the lower wall for turbulent flow 

 

Figure 10.  Variation of the dimensionless wall shear parameter for the upper wall for turbulent flow 

 

Figure 11.  Variation of the dimensionless wall shear parameter of the lower wall for both turbulent 

and laminar flow. Magnification on the right.  
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Figure 12.  Variation of the dimensionless wall shear parameter of the upper wall for both turbulent 

and laminar flow. Magnification on the right.  

 

Figure 13.  Variation of the dimensionless wall heat transfer parameter, for turbulent flow and for the 

lower plate 

 

Figure 14.  Variation of the dimensionless wall heat transfer parameter, for turbulent flow and for the 

upper plate 

 

Figure 15.  The dimensionless wall heat transfer parameter for laminar in conjunction with turbulent 

flow for the lower plate 

 

Figure 16.  The dimensionless wall heat transfer parameter for laminar in conjunction with turbulent 

flow for the upper plate 

 

 

 

Re = 200 

B 

(Tesla) 
MnM MnF

2 2.50 512.69 

4 10.00 1025.39 

6 22.50 1538.09 

8 40.00 2050.78 

10 62.50 2563.48 

 

Table I : Various magnetic parameters for Re=200 and for various magnetic field strengths 

  

 27


































	E.E. Tzirtzilakis†, M. Xenos♣, V.C. Loukopoulos* and N.G. Kafoussias†$                       



