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Abstract 
 

The steady, compressible, turbulent boundary-layer flow, with heat and mass transfer, over a 

wedge, is numerically studied. The fluid is considered to be a Newtonian ideal gas (air) and it is 

subject to a constant velocity of suction/injection applied globally or locally to the wedge. 

 The Reynolds-Averaged Boundary-Layer (RABL) equations and their boundary conditions 

are transformed using the compressible Falkner-Skan transformation. The resulting coupled and 

nonlinear system of PDEs is solved using the Keller-box method. For the eddy-kinematic viscosity the 

Cebeci-Smith and Baldwin-Lomax turbulent models are employed. For the turbulent Prandtl number 

the extended model of Kays-Crawford is used. 

 Numerical calculations are carried out for the case of an adiabatic, cooled or heated wall and 

for different values of the parameters of the problem under consideration. The obtained results show 

that the flow field can be controlled by the suction/injection velocity and it is influenced by the 

dimensionless pressure parameter m.    
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1. Introduction 

A common area of interest in the field of aerodynamics is the investigation of compressible two-

dimensional steady turbulent flows. A characteristic flow configuration, which is of fundamental 

importance, is that of the flow over a wedge. This type of flow constitutes a general class of problems 

in fluid mechanics in which the free stream velocity is proportional to a power of the length co-

ordinate measured from the stagnation point.  

The two-dimensional incompressible wedge flow investigated, for the first time, in 1931 by 

Falkner and Skan [1] and since then, it has been studied by many authors. The most recent and 

representative research works, for this type of flow, were presented in [2]-[9]. 

Suction/injection has very often been used as an active aerodynamic flow control technique to 

prevent transition from laminar to turbulent flow as well as turbulent flow separation as far as the 

aerodynamics is concerned [10]. The combined influence of localized injection and localized suction 

retains the boundary-layer flow, reducing skin friction [11], [12]. Many passive and active techniques 

have been developed for the prevention or delay of flow separation. Passive techniques are currently 

employed via blown flaps on the tip of the aircraft wings or leading edge extensions and strakes on the 

nose of the wings (slats) or via vortex generators on various points on the wings [13]. Another mean of 

boundary-layer control is by heating or cooling the wall [14]. 

The numerical investigation of the two–dimensional turbulent boundary-layer compressible flow, 

with an adverse pressure gradient and heat and mass transfer, over a finite smooth and permeable flat 

surface, was studied in [15]. It was found that the continuous suction/injection applied on the wall 

modulates the flow field and the separation point in adiabatic, heating and cooling flat plates. The 

localized suction/injection moves the separation point downstream, and the local skin friction 

coefficient is smaller than in the corresponding case of continuous suction. The effect of 

suction/injection is less evident as the free stream Mach number increases. It is also worth mentioning 

that the boundary layer over the heating wall is more sensitive to separation that that of the adiabatic 

and cooling walls.   

As far as it could be investigated, the compressible turbulent boundary-layer flow over a wedge has 

not been yet studied. Hence, the aim of this work is the investigation of the classical wedge flow 

problem from the aerodynamics point of view. Thus, in the present study, the compressible turbulent 

boundary-layer flow over a permeable wedge is numerically studied. The effects of localized suction, 

applied to the region of the separation point, are also examined. The boundary-layer flow is considered 

turbulent and two turbulent models are employed, those of Cebeci-Smith (C-S) and Baldwin-Lomax 

(B-L). From the analysis of the obtained results it is concluded that localized suction or injection 

influences the flow field and the separation point, rendering the above application a flow control 

technique. 
 
 



2. Mathematical formulation 

The steady, two-dimensional, compressible and turbulent boundary-layer flow over a permeable 

wedge is considered. The wedge is submerged in a heat-conducting perfect and Newtonian fluid (air), 

with density ρ  and thermal conductivity , flowing with velocity u∞ towards the wedge (k Figure 1). 

The fluid on the wedge is subjected to suction or blowing through the entire surface or locally from 

slots on various locations on the surface of the wedge. The suction/injection velocity on the wedge 

surface is ( )w xυ whereas the temperature of the surface of the wedge is . ( )wT x

(Figure 1) 
 

Under the above assumptions, the equations governing this type of flow are the Reynolds-Averaged 

Boundary-Layer (RABL) equations, which can be written in the orthogonal system of coordinates 

shown in Figure 1, as follows [14], [15]. 

 

Continuity equation  

( ) ( ) 0∂ ∂′ ′ ′ ′+ + + =
∂ ∂

u u
x y

ρ ρ ρυ ρ υ , (1)

 
x - Momentum equation 

( ) ( ) ( )⎡ ⎤∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′+ + + = − + − +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

u u p uu u u u
x y x y y

ρ ρ ρυ ρ υ μ ρ υ ρ υ , (2)

 
y - Momentum equation 

0p
y

∂
=

∂
, (3)

 
Total-enthalpy equation 

( ) ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − −⎢ ⎥⎜∂ ∂ ∂ ∂ ∂⎝⎣ ⎦
p p

H H T uu k c T c T u u
x y y y y

ρ ρυ ρ υ ρ υ ρ υ μ ρ υ ρ υ ⎟
⎠

u  (4)

 

It is worth mentioning here that the total enthalpy H for a perfect gas is defined by the expression: 

 

21
2pH c T u= +  (5)
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     In the above equations we have replaced the instantaneous “quantities” f  (e.g. u , υ , T , ρ ) by the 

sum of their mean  ( f  )  and  fluctuating parts ( f ′ ), that is f f f ′= + . 

It can be proved, by applying an order - of - magnitude analysis [14], that density fluctuations are 

generally small in practice, both in low-speed flows with high heat transfer and in high-speed 

adiabatic-wall flows. Thus, terms containing ρ′  can be dropped from the mass, momentum and 

enthalpy equations for thin shear layers. Also, the term uρ′ ′  is negligible compared with uρ  as long 

as ( ) 21 Mγ −  is not an order of magnitude greater than unity, whereas the term ρ υ′ ′  cannot be 

neglected, compared with ρυ , in the continuity, momentum and total-enthalpy equations.  

    On the other hand, the y-momentum equation (3) shows that the pressure variation is governed by 

the free-stream and the term p
x

∂
∂

 in the x-momentum equation can be substituted by  

e
e e

dup dp u
x dx dx

ρ∂
− = −  = 

∂
, (6)

 

where the subscript, e, refers to the conditions at the edge of the boundary layer. 

Due to the parabolic nature of the above equations, boundary conditions must be provided on two 

sides of the solution domain in addition to the initial conditions at x = x0 . So, the boundary conditions 

of the problem under consideration are  

 

w w p w0 0  =  H=H (x)=c T= =y : u , ( x ), ( x )υ υ , 

21
2

=   =   = = +e e e ey : u u ( x ), H H ( x ) T ( x ) u ( x )δ . (7)

 

    In the above boundary conditions (7) δ is a distance sufficiently far away from the wall where the u 

velocity and the temperature T reach their free-stream values  and . ( )eu x ( )eT x

 On the other hand, υw(x) is the mass transfer velocity at the wall and for the case of an 

impermeable wall υw(x) is equal to zero, for the case of suction υw(x) < 0 whereas for the case of 

injection υw(x) > 0. 

   In the flow over the wedge the velocity at the edge of the boundary layer can be written as in [2] 
 

, 0
2

m
eu u x m β

β∞= =
−

≥ , (8)
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where  is the free stream velocity and β is the Hartree pressure-gradient parameter that corresponds 

to 

u∞

/β ω π=  for a total angle ω  of the wedge. Using the abbreviation ρυ  for ρυ ρυ+  and omitting, 

for simplicity, the over-bars on the basic time-average variables u, υ, ρ, p and T the equations of the 

problem can now be written as: 

( ) ( ) 0u
x y

,∂ ∂ρ ρυ
∂ ∂

+  =  (9) 

e
e e

duu u uu u
x y dx y y

∂ ∂ ∂ ∂ uρ ρυ ρ μ ρ υ
∂ ∂ ∂ ∂

⎡ ⎤′ ′+ = + −⎢ ⎥
⎣ ⎦

, (10)

.p
H H T uu k c T u
x y y y y

∂ ∂ ∂ ∂ρ ρυ ρ υ μ ρ υ
∂ ∂ ∂ ∂

u
⎡ ⎤⎛ ⎞∂ ′ ′ ′+ = − + − ′  ⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

 
(11)

 
 

 Defining the eddy kinematic viscosity εm and turbulent Prandtl number Prt   by the expressions 

 

m
uu
y

υ ε ∂′ ′− =
∂

, m

t

TT
Pr y
ευ ∂′ ′− =

∂
, (12)

 

the equations describing the problem can be written as 

 

0( u ) ( ) ,
x y

∂ ∂ρ ρυ
∂ ∂

+  =  (13)

( ) ,e
e e m

duu u uu u
x y dx y y

∂ ∂ ∂ρ ρυ ρ μ ρε
∂ ∂ ∂

⎡ ⎤∂
+ = + +   ⎢ ⎥∂⎣ ⎦

 (14)

1 11 1 ,H
Pr Pr Pr Pr

m
m

t t

H H uu u
x y y y y

ε∂ μ ∂ρ ρυ ρ μ ρε
∂ ∂ ∂ ∂

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎛ ⎞+ = + + − + −  ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 

(15)

 

whereas the boundary conditions remain unchanged, that is 

 

0 0 w wy : u , ( x ), H H ( x )υ υ=   =   =   = , 

e ey : u u ( x ), H H ( x )δ=   =   = . 
(16)

 

The above system of equations (13)-(16) is a coupled and nonlinear system of partial differential 

equations (PDEs). 
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In order to solve the system of PDEs numerically, the compressible version of the Falkner-Skan 

transformation for a wedge is introduced, defined by 

 

1/ 2

0

( )1 ( , )y( , ) ,
2 ( ) ( )

y
e

e e

u xm x

 6

x y d
x x x

ρη
ν ρ

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠∫ y   
1/ 22( , ) ( , )

1 e e ex y u x f x
m

ρ μ η⎛ ⎞
⎜ ⎟+⎝ ⎠

ψ =  (17)

 

where f(x, y) is the dimensionless stream function. Using the definition of the stream function ψ, for a 

two-dimensional compressible flow, that satisfies the continuity equation (13), with the relations 

 

, =     = − u
y x

∂ψ ∂ρ ρυ ψ
∂ ∂

 (18)

 

and defining the dimensionless total energy ratio S as S  =  , the system of the PDEs / eH H (13)-(16) 

finally becomes 

2
1 2( ) [ ( ) ] ,f fbf m ff m c f x f f

x x
′∂ ∂⎡ ⎤′′ ′ ′′ ′ ′ ′′+ + −  = −⎢ ⎥∂ ∂⎣ ⎦

 (19)

1( ) S fe S d f f m f S x f S ,
x x

∂ ∂⎡ ⎤′ ′ ′′ ′ ′ ′ ′+ + = −⎢ ⎥∂ ∂⎣ ⎦
 (20)

1/ 2

0

10 : 0 ( ) ( ,0) ( ,0) ( ) , ( ,0)
2

x

w w w
e e e

m
wf f x f x x x dx S S x

u x
η ρ

μ ρ
⎛ ⎞+′=   = , = = −   =⎜ ⎟
⎝ ⎠

∫ υ

1

, 

: 1,e f Sη η ′=   =    = , 
(21)

 

where ηe is the dimensionless thickness of the boundary layer and primes denote partial differentiation 

with respect to η. The quantities b, C, c, d, e, m1, m2, mε + and xR  are defined as follows: 

( ) ( )1 ( , ) ( , )1 , , ,
2 ( ) ( ) ( , )

e
m

e e

xm x xb C C c
x x x

ρρ η μ ηε
ρ μ ρ η

+ +
= + = =  

2 ( ) 1 11 1 ,
( ) Pr Pr ( , )

e m
m m

e t

Cu xd
H x x

εε ε ,
ν η

+ +⎡ ⎤⎛ ⎞
= − + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

2
( ) ( )Pr1 , ,

Pr Pr ( ) ( )
e e

m x
t e e

du x u x xC xe m R
u x dx x

ε
ν

+⎛ ⎞
= +  =  =⎜ ⎟

⎝ ⎠
 

1 2
1 1 (
2 ( ) ( ) e e

e e

x dm m
x x dx

)ρ μ
ρ μ

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
. 

(22)

 



The problem under consideration is described by the system of equations (19) and (20), subjected 

to the boundary conditions (21), whereas the coefficients entering into the equations are defined by the 

expressions (22). 

3. Turbulence models 

In this study two algebraic turbulence models, Cebeci-Smith (C-S) and Baldwin-Lomax (B-L), are 

used for the calculation of the eddy–viscosity, εm and a model for the turbulent–Prandtl number, Prt. 

The C-S model [14], [16], [17] is one of the simplest turbulence models and its accuracy has been 

explored for a wide range of experimental data. It is a “Zero–equation PDE model”, using only PDEs 

for the velocity field [18]. It has been used for a wide range of engineering problems providing 

accurate results [15], [19]. The C-S turbulent model is a two-layer algebraic eddy viscosity model 

where the turbulent boundary–layer is treated as a composite layer consisting of inner and outer 

regions with separate expressions for the eddy-kinematic viscosity in each region. For the inner region 

(viscous sublayer) the Prandtl–Van Driest formulation is used while for the outer region the Clauser 

formulation is used [14]. 

Baldwin and Lomax improved the C-S turbulent model avoiding the necessity for finding the edge 

of the boundary–layer. B-L is an algebraic turbulent model that also treats the turbulent boundary–

layer as a composite layer consisting of inner and outer regions. For the inner region the Prandtl–Van 

Driest formulation is used. For the outer region, Baldwin and Lomax introduced a new formulation 

according to which the product MAX MAXy F   replaces *
euδ  in the Clauser formulation of the C–S model 

and the combination  2 /MAX DIF MAXy U F  replaces DIFUδ  in the wake formulation [20]. 

The B–L turbulence model was developed for use in multi-dimensional Navier–Stokes machine 

codes [21], [22] and the results from this model are in a good agreement with experimental data. Many 

researchers have adopted the B–L algebraic model for its simplicity, although modifications to its 

basic form have been employed [23]. To investigate the mass transfer through the surface of the 

wedge, in the B–L model, a formula for the suction/injection velocity is adopted. In this study the 

“damping–length” parameter A+  is not considered constant, but as a function of the local density and 

viscosity values [14]. Finally, for the turbulent–Prandtl number Prt   a modification of the extended 

Kays and Crawford’s model is used [12], [24]. 

4. Numerical solution 

The numerical scheme used to solve the parabolic system of PDEs (19)-(22) is a version of the 

Keller–box method [14]-[16], [25]. The scheme is unconditionally stable, and second–order accuracy 

is achieved with arbitrary x and η-spacing [26]. The governing equations are written as a first–order 

system and derivatives of the unknown functions f(x, η), S(x, η) with respect to η are introduced as new 

functions. Using central–difference derivatives for the unknown functions at the midpoints of the net 

rectangle, the resulting difference equations are implicit and nonlinear. The box–differencing scheme 
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with Newton linearization is then applied to the first–order PDEs, giving rise to a block tridiagonal 

system, which is solved by the block elimination method [27].  

For the dimensionless total enthalpy ratio , on the surface of the wedge, three different cases are 

considered. The case

wS

0wS ′ = , describing no heat transfer between the wedge and the fluid (adiabatic 

flow) and the cases and . For the heating/cooling of the wedge (wall) the dimensionless 

heat-transfer parameter is considered  and

wS >1 1wS <

1, ( 2)w wS S> = 1, ( 0.25)w wS S< = , respectively. For 

determining the specific heat under constant pressure , the Prandtl number Pr and the density ρ of 

the fluid (air) for temperatures varying from 100 to 2500 K, an interpolation formula is used. The data 

for the , Pr and ρ were taken from tables 

pc

pc [14], [28]. The values of each quantity, for every value of 

temperature, are calculated by the successive linear interpolation approach known as Neville’s 

algorithm [29]. 

The developed numerical code was examined for grid independency in a previous publication [30]. 

That study showed that a computational grid of 801×61 is sufficient to provide accurate numerical 

results by comparing the separation point, total drag and the maximum temperature for different grid 

realizations. The numerical implementation provides similar results for computations above 801×61 

grid points and is not influenced by the increase of the Mach number [30]. However, in this study a 

grid of 1601×81 grid points was used, where 81 points were used on the η-direction and 1601 on the x-

direction. The length (L) of the wedge was taken for all calculations up to 8 m. 

For the numerical solution of the equations describing the problem the program is divided in two 

parts. The first is a dynamic link library (DLL) which contains all the algorithms for the numerical 

solution of the problem. The second part is a graphical user interface (GUI), where the user can review 

or alter the initial data, as, for instance, the free stream Mach number, the temperature of the plate and 

the fluid, the suction/injection velocity, etc. The program was written in FORTRAN 90 utilizing 

OpenGL for the visualization of the data [31]. 

 

5. Results and discussion 

The results of this study concern dimensionless as well as dimensional quantities of the 

compressible turbulent boundary-layer over the wedge. It is very important to present results on the 

dimensionless local skin friction coefficient, fxC  and the local Stanton number, xSt , for heated and 

cooled walls, as well as the total drag D, over the wedge. It is also imperative to present results for 

dimensional quantities that will provide information for the shape of the compressible turbulent 

boundary layer under the adverse pressure gradient, e.g. the velocity and temperature fields throughout 

the boundary layer. 

Figure 2a presents the velocity field on the upper wall of a wedge for m = 0.1, (ω = 32.7o) and m = 

0.2, (ω = 60o). The boundary layer is always attached to the plate and never separates from the surface 
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for Mach number . The figure also depicts the temperature field over the upper surface of 

the wedge for adiabatic wall (

0.75M∞ =

Figure 2b, 0wS ′ = ), heated (Figure 2c, 2 0wS .= ) and cooled wall (Figure 

2d, ) for both cases (m = 0.1 and 0.2). The increase of temperature in the boundary layer for 

the adiabatic case is 6.5 degrees for m = 0.1 and 10.3 degrees for m = 0.2. This temperature increase is 

due to viscous forces acting on the flow field and the inclination of the wall. The maximum 

temperature for the adiabatic case is 306.5 K for m = 0.1 and 310.3 K for m = 0.2, for the heated wall is 

410.3 K for m = 0.1 and 616.8 K for m = 0.2, and occurs near the heated wall. Finally, the maximum 

temperature for the cooled wall is 306.1 K for m = 0.1 and 310.1 K for m = 0.2, and occurs near the 

edge of the boundary layer of the wedge as shown in 

0.25wS =

Figure 2d. 

(Figure 2) 

The flow over a flat plate at zero incidence, with constant external velocity, is known as Blasius 

flow and corresponds to the dimensionless pressure gradient m = 0. The dimensionless parameter m 

plays an important role in this type of problem because it denotes the shape factor of the velocity 

profiles [2]. It has been shown that when m < 0 (increasing pressure), the velocity profiles have a point 

of inflexion whereas when m > 0 (decreasing pressure), there is no point of inflexion for the laminar 

boundary layer [16]. In the case under consideration (steady, two-dimensional, compressible and 

turbulent boundary-layer flow) the investigation is limited only for  and results are presented for 

these values of m. In order to quantify the boundary layer over a wedge, important dimensionless 

quantities, like the dimensionless local skin friction coefficient

0m ≥

fxC , the local Stanton number xSt  and 

the total drag D, over the wedge, are presented. Equation (23), shows the relationship that connects 

these quantities with the dimensionless shear parameter on the wall ( ,0)wf f x′′ ′′= , the dimensionless 

heat transfer parameter ( ,0)wS S x′ ′=  and the dimensionless total enthalpy ratio Sw = Hw/He on the wall 

of the wedge [15], [25]. 

 

1/ 2 21
2

w
fx w

x

CmC f
R

+⎛ ⎞ ′′= ⎜ ⎟
⎝ ⎠

,     
( )

( )
1/ 21 , 1

2 Pr 1
w w

x w
x w

C SmSt S
R S

′+⎛ ⎞= ≠⎜ ⎟ −⎝ ⎠
, 

1/ 2
2

0

( ,0)12 (
2 Re

x
w w

e e
x

C f xmD xρ
∗

′′+⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫ ) ( )u x dx  

(23)

 

   In the above expression, *x  is the distance of the separation point from the leading edge and 

/w w w eC eρ μ ρ μ= . Also, the total drag D is evaluated for both walls of the two-dimensional wedge. 

Figure 3 shows the skin friction coefficient fxC , against the distance x for various values of the 

parameter m (m = 0.0, 0.2, 0.4, 0.6, 0.8), for 0.75M ∞ =  and for the two turbulence models (C-S, B-L) 
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for the case of an adiabatic wall. For small values of the dimensionless parameter m ( ), no 

separation occurs of the compressible turbulent boundary-layer over the wedge for the whole length of 

8.0m. For larger values of the dimensionless parameter m ( ), the model predicts separation of 

the turbulent compressible boundary layer. Both turbulent models give similar results and as the angle 

of the wedge is increased the total drag D, and the skin friction coefficient 

0.6m ≤

0.6m >

fxC , increase in both C-S 

and B-L models. In the case that , the separation of the compressible turbulent boundary-layer 

occurs at 

0.8m =

* 3.84x m=  for the C-S and at * 4.16x m=  for the B-L turbulence model. 

(Figure 3) 

The same behavior is shown for smaller ( 0.5M ∞ = ) or larger ( 1.25M ∞ = ) Mach numbers. The 

results for the total drag D, for various Mach numbers M ∞ , for both turbulent models and for m = 0.0, 

0.1, 0.2 and for an adiabatic wall are summarized in Table 1. 

(Table 1) 

The results for heated and cooled walls of the wedge are similar with those of the adiabatic case. 

Figure 4 and Figure 5, depict the skin friction coefficient fxC , against the distance x, for the cases of 

cooled and heated wedge walls, respectively, and for the various values of the dimensionless pressure 

parameter m (m = 0.0, 0.2, 0.4, 0.6, 0.8). The figures show that separation occurs only when  

for both turbulence models and for both cases (heated and cooled walls). For  the separation 

point for the cooled wall is at

0.6m >

0.8m =

* 4.51x m=  for the C-S model and at * 4.66x m=  for B-L. On the other 

hand, for  and heated, wall the predicted separation point for the C-S model is at0.8m = * 3.39x m=  

and at * 3.77x m=  for the B-L turbulence model. In all cases examined until now, the total drag D, 

increases as the dimensional pressure parameter m increases, and as a first result, can be concluded 

that the increase of parameter m, increases the skin friction coefficient fxC  and the total drag D, over 

the wedge.    

(Figure 4 and Figure 5) 

  One of the control methods that can retain the turbulent compressible boundary layer over the 

wedge for larger values of the dimensionless pressure parameter m is the application of continuous or 

localized suction/injection. Figure 6, shows the skin friction coefficient fxC , against the distance x, for 

m = 0.2 and 0.8 with or without suction/injection and for M∞ =1.25. The application of suction is 

continuous at the whole length of the upper wall of the wedge ( ( )w xυ = - 2.0×10-4) or localized near 

the tip of the wedge ( ( )w xυ = - 6.0×10-4). The left part of Figure 6, shows the influence of localized 

and continuous suction when m is small (m = 0.2). The compressible turbulent boundary-layer is 

retained on the wall for this case and separation does not occur at the whole length of the adiabatic 

plate. The application of continuous suction increases the total drag but the localized suction has a 

smaller effect on D. The right part of Figure 6, reveals the influence of suction when m is large 
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(m = 0.8). In this case, the application of continuous suction moves the separation point downstream 

and retains the boundary-layer on the adiabatic wall of the wedge. So, at m = 0.8 with no suction or 

injection the separation point is at * 4.02x m= , but after continuous suction the separation occurs 

at * 4.19x m= . The localized suction applied at the tip of the wedge has the same effect as the 

continuous suction shifting the separation point downstream at * 4.14x m= . The total drag in the case 

of localized suction is smaller than that in the case of continuous, as shown in Figure 6. 

(Figure 6) 

Similar results are observed in the cases of heated and cooled wedge walls. These results are 

illustrated in Figures 7 and 8, respectively, for two different dimensionless pressure parameters (m = 

0.2 and 0.8). In both cases (heated and cooled wedge walls) continuous and localized suction increases 

total drag but in the case of m = 0.2 they retain the compressible turbulent boundary-layer and prevent 

separation. The applied localized suction, near the tip of the wedge, was ( )w xυ = - 4.0×10-4 and the 

continuous suction, at the whole length of the upper wall of the wedge, was ( )w xυ = - 1.5×10-4 for the 

case of a heated wall. On the other hand, the applied localized suction, near the tip of the wedge, was 

( )w xυ = - 5.0×10-4 and the continuous suction, at the whole length of the upper wall of the wedge, was 

( )w xυ = - 2.0×10-4 for the case of a cooled wall. More precisely, in Figure 7-right, separation occurs at 

* 3.59x m=  with the application of continuous suction and at * 3.67x m=  with the application of 

localized, in respect to the initial case (no suction/injection) that separation occurs at * 3.63x m= . In 

Figure 8-right, separation occurs at * 4.56x m=  for continuous suction and at * 4.68x m=  for 

localized, in respect to the initial case (no suction/injection) where separation occurs at * 4.64x m= . It 

is apparent that the compressible turbulent boundary-layer can be retained with the application of 

suction, but the total drug D, increases especially in the case of continuous suction as shown in the 

figures.  

(Figure 7 and Figure 8) 

In Figure 9, the local Stanton number xSt is presented, for heated and cooled walls and different 

values of the dimensionless pressure parameter m (m = 0.0, 0.2, 0.4, 0.6, 0.8), for the C-S turbulence 

model. So, at each case (heated and cooled walls) the local Stanton number xSt , increases as the  

parameter m increases and this is due to the friction effects on the wall of the wedge that are more 

pronounced when the inclination of the wedge increases. Figure 10, depicts the influence of 

continuous and localized suction on the local Stanton number. The dimensionless pressure parameter 

m, was chosen equal to 0.8 and the turbulence model used for these simulations is the C-S. The case of 

m = 0.0 is also presented for comparison with the cases of m = 0.8 no suction/injection, continuous and 

localized suction. The continuous as well as the localized suction increases the local Stanton 

number xSt , over the wedge in both cases of Figure 10 (heated and cooled walls) and this increase is 

more evident in the case of cooled walls. 
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(Figure 9 and Figure 10) 

 Finally, in an effort to describe the variation of the total drag D, with respect to the Mach number 

infM M= M∞ ,  Figure 11 presents the variation of D, against ∞ , for a small dimensionless pressure 

parameter m (m = 0.1) and for an adiabatic wedge wall. The cases of no suction/injection, continuous 

suction at the whole length of the wedge (8.0m) and continuous injection are presented. For the whole 

range of Mach numbers investigated ( M ∞ =  0.25 until 2.25 Mach) the total drag D, is always larger in 

the case of continuous suction as expected. The total drag is always smaller in the case of continuous 

injection in respect to the cases of no suction/injection and continuous suction. So, a combination of 

localized suction and localized injection would be the most beneficial tradeoff and is widely used in 

our days in all modern airplanes, for drag reduction and boundary-layer prevention of separation 

especially during takeoff and landing.  

(Figure 11) 

6. Conclusions 

• A mathematical formulation for the turbulent compressible boundary-layer flow over a wedge 

was presented. 

• Different values of the dimensionless pressure parameter m were examined (m = 0.0, 0.2, 0.4, 

0.6, 0.8). When m increases, the dimensionless skin friction coefficient fxC , the local Stanton 

number xSt , and the total drag D, increase as shown in the figures. 

• Small values of m ( 0 6m .≤ ), does not lead to boundary-layer separation in the 8m length of 

the wedge wall. Though, increasing m ( 0 6m .> ), separation occurs for all cases of adiabatic, 

cooled and heated walls of the wedge. 

• Application of continuous suction retains the boundary-layer downstream to the flow but 

increases total drag. Localized suction retains the boundary-layer downstream to the flow and 

is more desirable due to smaller total drag D, than the continuous suction case. 

• Suction always increases the total drag over the wedge. On the other hand, injection decreases 

the total drag over the wedge and the combination of the localized suction and injection is 

important for drag reduction and prevention of boundary-layer separation. 
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Caption of Figures 
Figure 1. Flow configuration and coordinate system for the wedge. 

Figure 2. (a) Velocity field over a wedge for m = 0.1 – left and m = 0.2 – right, (b) Temperature field 
for an adiabatic wall for m = 0.1 – left and m = 0.2 – right, (c) Temperature field for a heated wall for 
m = 0.1 – left and m = 0.2 – right, (d) Temperature field for a cooled wall for m = 0.1 – left and m = 
0.2 – right. M ∞ = 0.75. 

Figure 3. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m, 
for and for the case of an adiabatic wall (C-S - left, B-L - right). 0.75M ∞ =

Figure 4. Skin friction coefficient Cfx against the distance x for various values of the parameter m, for 
 and for the case of a cooling wall (C-S - left, B-L - right). 0.75M ∞ =

Figure 5. Skin friction coefficient Cfx against the distance x for various values of the parameter m, for 
 and for the case of a heated wall (C-S - left, B-L - right). 0.75M ∞ =

Figure 6. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m 
= 0.2 and 0.8), for  and for the case of an adiabatic wall and application of continuous and 
localized suction (C-S turbulent model). 

1.25M ∞ =

Figure 7. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m 
= 0.2 and 0.8), for  and for the case of a heated wall and application of continuous and 
localized suction (C-S turbulent model). 

1.25M ∞ =

Figure 8. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m 
= 0.2 and 0.8), for  and for the case of a cooled wall with application of continuous and 
localized suction (C-S turbulent model). 

1.25M ∞ =

Figure 9. Local Stanton number xSt , for heated – left and cooled – right walls and different values of 
the dimensionless pressure parameter m (C-S turbulent model). 

Figure 10. Local Stanton number xSt  for heated – left and cooled – right walls and different values of 
the dimensionless pressure parameter m (C-S turbulent model) with suction/injection. 

Figure 11. Total drag D with respect to the Mach number for the cases of no suction/injection, suction 
and injection, for a specific inclination of an adiabatic wedge (m = 0.1). 

 

Caption of Tables 

Table 1. Total drag D for various Mach numbers M ∞  and dimensionless pressure parameter m for an 

adiabatic wall. 
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Figure 1. Flow configuration and coordinate system for the wedge. 
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Figure 2. (a) Velocity field over a wedge for m = 0.1 – left and m = 0.2 – right, (b) Temperature field for an adiabatic 
wall for m = 0.1 – left and m = 0.2 – right, (c) Temperature field for a heated wall for m = 0.1 – left and m = 0.2 – 
right, (d) Temperature field for a cooled wall for m = 0.1 – left and m = 0.2 – right. 
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Figure 3. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m, for and for the case of an adiabatic wall (C-S - left, 
B-L - right). 
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Figure 4. Skin friction coefficient Cfx against the distance x for various values of the parameter m, for  and for the case of a cooling wall (C-S - left, B-
L - right). 
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Figure 5. Skin friction coefficient Cfx against the distance x for various values of the parameter m, for  and for the case of a heated wall (C-S - left, B-L 
- right). 
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Figure 6. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for  and for the case of an adiabatic 

wall and application of continuous and localized suction (C-S turbulent model). 
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Figure 7. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for  and for the case of a heated wall 
and application of continuous and localized suction (C-S turbulent model). 
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Figure 8. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for  and for the case of a cooled 
wall with application of continuous and localized suction (C-S turbulent model). 
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Figure 9. Local Stanton number xSt , for heated – left and cooled – right walls and different values of the dimensionless pressure parameter m (C-S turbulent model). 
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Figure 10. Local Stanton number xSt  for heated – left and cooled – right walls and different values of the dimensionless pressure parameter m (C-S turbulent model) 
with suction/injection. 
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Figure 11. Total drag D with respect to the Mach number for the cases of no suction/injection, suction and injection, for 
a specific inclination of an adiabatic wedge (m = 0.1). 
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List of Tables 
 
 

Table 1. Total drag D for various Mach numbers M ∞  and dimensionless 
pressure parameter m for an adiabatic wall. 

 
 C-S model B-L model 

0.5M ∞ =  
m = 0.0 
m = 0.1 
m = 0.2 

D =   355.25 
D =   362.47 
D =   363.72 

m = 0.0 
m = 0.1 
m = 0.2 

D =   362.32 
D =   371.58 
D =   375.21 

0.75M ∞ =  
m = 0.0 
m = 0.1 
m = 0.2 

D =   749.52 
D =   771.22 
D =   780.98 

m = 0.0 
m = 0.1 
m = 0.2 

D =   767.03 
D =   793.61 
D =   809.16 

1.25M ∞ =  
m = 0.0 
m = 0.1 
m = 0.2 

D = 1891.14 
D = 1997.23 
D = 2081.80 

m = 0.0 
m = 0.1 
m = 0.2 

D = 1947.16 
D = 2070.94 
D = 2176.54 
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