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Abstract 
     The two – dimensional, steady, laminar, forced and free convective boundary layer flow of a 
magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, 
is numerically studied. The magnetic fluid is considered to be water-based with temperature 
dependent viscosity and thermal conductivity. The study of the boundary layer is separated into 
two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by 
the large viscous forces, whereas in case II the boundary layer is studied far from the leading 
edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these 
two different cases, is obtained by an efficient numerical technique based on the common finite 
difference method. Numerical calculations are carried out for the value of Prandl number Pr = 
49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters 
entering into the problem and especially for the magnetic parameter Mn , the 

viscosity/temperature parameter rΘ  and the thermal/conductivity parameter *S . The analysis of 

the obtained results show that the flow field is influenced by the application of the magnetic field 
as well as by the variation of the viscosity and the thermal conductivity of the fluid with 
temperature. It is hoped that they could be interesting for engineering applications. 
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1. Introduction 
 

     Ferro hydrodynamics (FHD) deals with the mechanics of magnetic fluid motion influenced by 
strong forces of magnetic polarization. A magnetic Ferro fluid consists of a stable colloidal 
dispersion of sub-domain magnetic particles in a liquid carrier. Magnetic fluids have been used 
commercially for a number of years in numerous devices, such as rotating shaft seals and 
exclusion seals, loud speakers, dampers, inclinometers etc, whereas magnetorheological fluids 
have achieved commercial use in hydraulical devices, loudspeakers and in grinding applications. 
According to Berkovski and Bashtovoy [1], numerous patents and a great number of scientific 
papers have been published, related to the preparation, properties and application of magnetic 
fluids [2] ~ [5]. In order to examine the flow of a magnetic fluid, under the action of an applied 
magnetic field, mathematical models have been developed by many investigators [6] ~ [9].  
     The two classical problems in fluid mechanics, namely the Blasius boundary layer flow along 
a flat plate and the stagnation point flow, were extended for a saturated Ferro fluid, under the 
combined influence of thermal and magnetic field gradients in [10]. The flow of a viscous 
Newtonian fluid past a linearly stretching surface in otherwise quiescent surroundings was first 
considered in [11]. Similar problems for a micro polar fluid or for inelastic power law fluids 
were studied by many authors [12] ~ [16]. The problem studied in [16] was extended in [17] by 
assuming that the magneto-thermo-mechanical coupling is not described by a linear function of 
temperature difference as in [16], but by a non linear one, the expression of which was used in 
[18]. Another classical problem in fluid mechanics is the free or the forced convective boundary 
layer flow, of a viscous incompressible fluid, over a vertical hot plate surface. In FHD, 
thermomagnetic convection, in conjunction with gravity-induced convection, is of fundamental 
importance for engineering applications. This type of problem was studied by many authors 
during the last seven years [19] ~ [23]. 
The aim of the present work is the numerical study of the two-dimensional, steady and laminar 
free-forced convective boundary layer flow of a magnetic fluid over a semi infinite vertical hot 
plate under the action of a localized magnetic field. To the authors’ knowledge, this physical 

problem has not yet been studied. The magnetic field H
G

 is considered to be of sufficient strength 
to saturate the magnetic fluid and the magnetization of the fluid is considered to be a linear 
function of the magnetic field intensity. For the mathematical formulation of the problem, which 
is presented in Section 2, the variation of the viscosityμ  of the fluid, as well as of its thermal 

conductivity k , with temperature T, is taken into account.  For the whole study, two separate 
cases are considered. The first (Case I), concerns the study of the boundary layer near the 
leading edge, where the boundary layer is dominated by the large viscous forces. The second one 
(Case II), concerns the study of the boundary layer far from the leading edge of the plate, where 
the effects of buoyancy forces increase and play a significant role to the evolution of the 
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boundary layer.  For each case, the mathematical analysis of the problem is simplified by 
introducing suitable dimensionless coordinates and variables of transformation. The numerical 
solution of the coupled non linear system of partial differential equations (PDEs), with its 
boundary conditions, describing the problem under consideration for Case I and Case II, is 
obtained by an efficient numerical solution technique presented in Section 3. Finally, numerical 
results for the fundamental quantities of the flow field, such as the velocity and temperature 
profiles and the skin friction and heat transfer coefficient, are presented and analyzed in Section 
4. The analysis of the obtained results indicates that application of a magnetic field in such a 
flow of a magnetic fluid could be interesting and useful for engineering applications. 
 
2. Mathematical formulation of the problem 
 
     The forced and free convective, steady, two-dimensional, laminar boundary layer flow of a 
viscous incompressible and homogeneous magnetic fluid, over a semi-infinite vertical flat plate 
is considered.  
     In a Cartesian coordinate system Oxyz , the plate is located at ,0=y  0 x≤ < ∞ ,  z−∞ < < ∞  

with the positive x-axis in the upward direction. The magnetic fluid is considered to be 
electrically non-conducting and flowing parallel to the plate in the positive x -direction, with a 

constant free stream velocity ∞u . The temperature wT  of the plate is considered to be uniform, 

constant and greater than the free stream fluid temperature ∞T , far away from the hot plate. The 

fluid flow is subject to the action of a localized magnetic field H
G

 of sufficient strength to 
saturate the fluid. The magnetic field is generated by an electric current, with intensity I , going 
through an infinite thin wire placed parallel to the plate (to the z - axis), at a distance a  from the 

origin of the Cartesian coordinate system Oxyz  and at a distance b  below the plate. Therefore, 

the position of this wire is  

),,( 00 zyx = ),,( zba   0>a , 0<b ,   z R∈ . 

In such a case the magnitude H
G

of the magnetic field intensity, is given by the expression  

                               H
G

 = 2/122 ])()[(
1

2
),(

byax
IyxH

−+−
=

π
.                            (1) 

For the formulation of the physical problem, the following assumptions are also made. Fluid 
property variations with temperature are limited to density, viscosity and thermal conductivity, 
with the density variation taken into account only as far as it effects the buoyancy term in the 
momentum equation (Boussinesq approximation). Under all the above assumptions, the two-
dimensional laminar boundary layer forced and free convective flow of the magnetic fluid, past 
the semi-infinite vertical plate, in the Oxy  plane, is governed by the following equations  
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In the above equations υ,u  are the fluid velocity components in the x  and y  direction, 

respectively, g   is  the gravitational acceleration, β  is the coefficient of thermal expansion of 

the fluid, T is the fluid temperature inside the boundary layer, ∞ρ  is the fluid density away from 

the hot plate, μ  is the viscosity of the fluid, 0μ  is the magnetic permeability of vacuum, k  is the 

thermal conductivity and pc  is the specific heat of fluid at constant pressure.  

The boundary conditions of the problem are 

 y 0 :=       u 0,=       0,υ =      wTT = ,        (5) 

 :∞→y    ,∞= uu    ∞= TT .                        (6) 

      The term 
x
HMo

∂
∂

∞ρ
μ

  in (3), represents the component of the magnetic force, known as 

“Kelvin body force term”, per unit volume, in the x -direction and depends on the existence of 

the magnetic gradient [6], [24]~[26]. The term  )(
y
H

x
Hu

T
MT

cp

o
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υ
ρ
μ  in (4), represents the 

thermal power, per unit volume, due to the magneto-caloric effect. 
There are various equations describing the dependence of the magnetization M  and some of 

them are mentioned in [6]~[9], [26]~[28]. For the physical problem under consideration the 
simplest expression is adopted [9], [26], [28]. This equation is of the form  

 HM χ= ,               (7) 

where χ is the magnetic susceptibility of the fluid and it is assumed to be a constant taking 

positive or negative values for magnetic fluids exhibiting paramagnetic ( χ >0) or diamagnetic 

( χ <0) behaviour. This ability of changing the sign of magnetization due to the change of the 

sign of χ, permits us to consider that the magnetic body force term of equation (3) takes the form  

± o HH
x∞

μ ∂
χ

ρ ∂
 

The change of the sign of the magnetic force term denotes that the fluid is attracted or 
repelled by the application of the magnetic field which is valid for diamagnetic or paramagnetic 
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materials. Attraction or repulsion of the fluid could be possibly achieved artificially by proper 
construction of magnetic nanoparticles which is plausible for biomedical applications [28], [29].   
     It is also known that, in the problem under consideration, the development of the boundary 

layer near the leading edge, where the local Reynolds number xRe  is low or the values of x are 

small, is dominated by the large viscous forces and the buoyancy force may be neglected. 
However, further along the plate, or for large values of x, these viscous forces diminish and the 

buoyancy, due to the temperature difference TΔ = wT  - ∞T , plays a significant role to the 

evolution of the boundary layer. Thus, in order to study the influence of the applied magnetic 
field to the flow field, two separate cases are considered. In the first case (Case I), the boundary 
layer is studied near the leading edge, where the values of x are small and the boundary layer is 
dominated by the large viscous forces. In the second one (Case II), the boundary layer is studied 
far from the leading edge of the plate where the effects of buoyancy forces increases and the 
values of x are large. 
 
2.1 Case I  
     In this case the following dimensionless coordinates of transformation are introduced 

                           2Re
)(

x

xGr
x =ξ  = cx ,    ),( yxη  = 2/1Re x  

x
y ,  y 0,≥   x >0,      (8) 

where xGr  and  xRe  are the local Grashof and local Reynolds number given by the expressions 
23 /)( ∞∞−= vxTTgGr wβχ , ∞∞= vxux /Re , respectively,                    (9) 

                          2/)( ∞∞−= uTTgc wβ   is a constant                                      (10) 

and ∞ν is the free stream kinematic viscosity ( ∞
∞

∞

μ
ν =

ρ
). In addition, a reduced stream function 

f ( , )ξ η  and a dimensionless temperature ),( ηξΘ  are defined as follows 

 1/ 2
xf ( , ) (x, y) /( Re )∞ξ η = Ψ ν , )/()(),( ∞∞ −−=Θ TTTT wηξ                        (11) 

The function (x, y)Ψ , is the stream function that ensures that (2) is automatically satisfied, i.e 

 (u, ) ( , )
y x

∂Ψ ∂Ψ
υ = −

∂ ∂
.          (12) 

In many research works it was considered that the viscosity and the thermal conductivity of 
the liquid carrier of a magnetic fluid are constants. However, it is known that these physical 
properties may change significantly with temperature and the flow characteristics substantially 
change compared with the constant viscosity and the thermal conductivity cases. Thus, a 
viscosity dependence on temperature T, suggested in [30], is of the form 

 
)(1 ∞

∞

−+
=

TTγ
μ

μ       (13) 
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in which the viscosity μ of the fluid is an inverse linear function of temperature T. 

Equation (13) can be rewritten as 

 1/ )( rΤ−Τ= αμ  where ∞= μγα /  and γ/1−= ∞TTr ,        (14) 

where both α  and rΤ  are constants the values of which depend on the reference state and γ  is a 

constant connected with the thermal property of the fluid. 
     The dimensionless temperature Θ  can also be written now as 

 rwr TTTT Θ+−−=Θ ∞ )/()( .     (15) 

where the parameter rΘ  is defined as 

                      .)(/1)/()( constTTTTTT wwrr =−−=−−=Θ ∞∞∞ γ                             (16) 

and its value is determined by the viscosity/temperature characteristics of the fluid and the 

operating temperature difference ∞Τ−Τ=ΔΤ w . 

It is worth noting here that, in the case where the temperature difference ΔΤ=T ∞−Tw  is positive, 

the viscosity/temperature parameter rΘ  is negative for liquids and positive for gases, since γ  

has the opposite sign in each of these cases. It has also been reported in [31] and [32] that, for 

physical reality, rΘ  cannot take values between 0 and 1 and it is rΘ >1 for gases and rΘ <0 for 

liquids. This merely reflects the physical property of the viscosity in these two stages of matter 
either increasing (gases) or decreasing (liquids) with increasing temperature. It is also noted that 

when rΘ  is large, the viscosity variation in the boundary layer is negligible. On the contrary, as 

rΘ 1+→  for gases, or rΘ 0−→  for liquids, the viscosity variation becomes increasingly 

significant. On the other hand, for most liquids the thermal conductivity k  is expressed by a 
linear function of temperature of the form [33]  

 )](1[ ∞∞ −+= TTskk .     (17) 

where ∞k is the ambient fluid thermal conductivity and s  is a constant depending on the nature 

of the fluid. This form can also be rewritten as  

 )1( *Θ+= ∞ Skk     (18) 

where                            )(*
∞−= TTsS w                                                                      (19) 

is the thermal/conductivity parameter and its values are determined by the nature of the fluid as 

well as by the operating temperature difference ∞Τ−Τ=ΔΤ w . 

     The substitution of (1) and (7) ~ (19), into equations (3) and (4), gives the following system 

r
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where Pr = pc
k
∞

∞

μ
 is the Prandtl number, prime denotes partial differentiation with respect to the 

variable η , d = 
∞

∞

u
cν  and RMn  is defined as RMn = 2)(cbMn , with Mn  being the magnetic 

parameter, or magnetic number expressing the ratio of the magnetic forces to the inertia forces 
(per unit volume) and defined by 

2
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, where 00 HM χ= , 000 Hμ=Β  and 0H  is the magnetic field intensity at the 

point 0 0 0(x , y ,z ) ( ,0,z)= α , i.e. (equation (1)) 
20

1
2

)0,(
b

IaHH
π

== . 

 Finally, the boundary conditions (5) and (6) become  
 :0=η     f ′= 0,    f = 0, Θ = 1,      (22) 

 :∞→η   f ′= 1,    Θ = 0.                (23) 

The dimensionless parameters entering into the problem under consideration, described by the 
system (20) ~ (23) for the Case I, are the Prandtl number Pr, the magnetic number Mn , the 

viscosity/temperature parameter rΘ  and the thermal/conductivity parameter *S . The system 

(20)~(21) is a coupled, nonlinear system of partial differential equations of parabolic type, with 
the unknown functions f ( , )ξ η  (or f ( , )′ ξ η = u / u∞ ), ( , )Θ ξ η , defined in the semi-infinite rectan-

gular domain D={ ( , )ξ η / 0< ξ<1, 0≤ η ∞≤ η }, subject to the boundary conditions (22)~(23). 

2.2 Case II 
     For this case it is helpful to define the dimensionless coordinates ξ  and ζ  by the following 

expressions [34], [35]. 
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On the other hand, for this case, a reduced stream function F( , )ξ ζ  and a dimensionless 

temperature ( , )Θ ξ ζ  are defined as follows 
1

2 3 4F( , ) (x, y) /[g T x ]∞ξ ζ = Ψ βΔ ν , w( , ) (T T ) /(T T )∞ ∞Θ ξ ζ = − −  (25) 

Following the same procedure, as in Case I, the system of equations describing the flow in the 
region of large values of x, or ξ , is 
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)1(
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1 *Θ+ S ′′Θ + *3 1( F S )

4 Pr
′ ′+ Θ Θ = (F ∂Θ′ξ

∂ξ
- F )∂ ′Θ
∂ξ

,  (27) 

whereas the boundary conditions of this system are 
                                       0 :ζ =     F′= 0,    F = 0,   Θ = 1,  (28) 

 :ζ →∞   F′= 1
ξ

,    Θ = 0.  (29) 

     The dimensionless parameters entering into this problem, described by the system (26) ~ (29) 
for the Case II, are the same to those in Case I. In this case, however, prime denotes partial 
differentiation with respect to the variableζ . The system (26)~(27) is a coupled, nonlinear 

system of partial differential equations of parabolic type, with the unknown functions F( , )ξ ζ  (or 

F ( , )′ ξ ζ ξ = u / u∞ ), ( , )Θ ξ ζ , defined in the semi-infinite rectangular domain D = { ( , )ξ ζ / 

1≤ ξ< ∞ξ , 0≤ ζ ∞≤ ζ }, subject to the boundary conditions (28) ~ (29). Also, it is worth noting 

here that in the case where Mn =0 and *S = 0, the problem under consideration, for both Cases, 
becomes similar to that studied by Kafoussias et al. [32], for the case of a non magnetic fluid (air 
or water) and solved by a different numerical   technique. 
 
3. Numerical solution technique 
3.1 Case I 
     For this case (small values of ξ ), the physical problem is described by the system of non-

linear equations (20) ~ (21) subject to the boundary conditions (22) and (23). It is worth 
reminding here that the dimensionless coordinate ξ , is defined, for both Cases, as 

2Re
)(

x

xGr
x =ξ = cx , where  2/)( ∞∞−= uTTgc wβ   is a constant. In a single experiment, when the 

fluid and temperature parameters are fixed, ξ  may be regarded as a dimensionless distance along 

the plate from the leading edge, whereas changing the fluid and temperature parameters merely 
alters the scale of the distance relative to the actual distance x . Near the leading edge, ξ<<1 

forced convection dominates. As  ξ  increases ( ξ~1), the fluid moves into the mixed convection 

regime and subsequently into a free convection dominated flow ( ξ>>1). 

      The system (20)~(21) as well as the system (26)~(27), is of parabolic type and it can be 
solved by several numerical methods discussed in [35]~[38]. The applied numerical scheme, 
used to solve the system under consideration, consists in proceeding in the ξ - direction, i.e. 

calculate unknown profiles at 1+iξ  when the same profiles at iξ  are known. However, as the 

system is of parabolic type, initial (at ξ=0) velocity and temperature profiles are needed to start 

the procedure. Thus, the process starts at ξ  = 0 where equations (20) and (21) reduce to 
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 r

r r

1f f f f 0
2

′Θ −Θ Θ′′′ ′′ ′′− − =
Θ Θ−Θ

,    (30) 

 )1(
Pr
1 *Θ+ S ′′Θ + *1 1( f S )

2 Pr
′ ′Θ Θ = 0.  (31) 

The boundary conditions for these equations are the same as those of the complete system of 
equations. The numerical solution of the above system is easily obtained by applying the 
efficient numerical technique described in detail in [39] and is similar to that presented in [40], 

[41]. This Crank–Nicolson-type numerical scheme is )( 2ξΔO and )( 2ηΔO  and is implemented 

on a uniform ηξ −  grid. The steps Δξ (=0.02) and ηΔ (=0.05) are experimentally adjusted until 

the results obtained are not numerically sensitive beyond the desired accuracy. For the numerical 
applications and for the obtained results, in the work under consideration, the maximum value of 
ξ  (ξ _final) has been chosen to be equal to 0.8 although the numerical solution can proceed, 

without any difficulty, for larger values ofξ . 

3.2 Case II 
     For the numerical solution of the system (26)~(27) subject to the boundary conditions 
(28)~(29) a similar numerical procedure as that for the system of Case I is applied.  In this case, 

however, to proceed the solution from iξ  to i 1+ξ , initial velocity ( F ( , )′ ξ ζ = ( u / u∞ )/ ξ ) and 

temperature ( ( , )Θ ξ ζ ) profiles are needed at some initial distance ξ _initial from the leading edge 

of the plate, that is, for ξ _initial >>0. These initial profiles are obtained from the solution of the 

system in Case I, up to the point ξ _final = ξ _initial =1. Then, the solution of the system in 

Case I, at the point ξ _initial =1, is used as initial conditions to start the solution of the system in 

Case II. Then, the solution proceeds for every ξ>1, up to a final distance from the leading edge 

of the plate, that is, up to the ξ= ′ξ _final. To verify the correctness of this choice, solutions of 

both systems were obtained for the same point (x, y)  inside the boundary layer or for the 

corresponding points ( (x), (x, y))ξ η ↔  ( (x), (x, y))ξ ζ  and in a region where both solutions could 

be valid, e.g. for (x)ξ =1.3. The solution of the system in Case I was compared with the solution 

of the system in Case II and both solutions were found to be in excellent agreement. The 
maximum value of ξ  ( ′ξ _final), for this case, has been chosen to be equal to ′ξ _final = 12.0. 

 
4. Results and discussion 
     In order to study, numerically, the effects of the various parameters of the problem under 
consideration on the flow field of a magnetic fluid, the following assumptions are adopted for 
both Cases I and II. The magnetic fluid is considered to have water as carrier liquid, i.e. it is a 

water-based magnetic fluid. The temperature wΤ  of the vertical plate as well as the fluid 

temperature ∞Τ  in the free stream are considered to be constants and equal to wΤ =353 Κ0  
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(80 0 C ) and ∞Τ = 293 0 Κ (20 0 C ), respectively. Thus, the temperature difference ΔΤ = wΤ - ∞Τ  

is equal to 60 Κ0 . The free stream velocity ∞u  of the magnetic fluid is taken equal to ∞u = 0.28 

m/sec and the acceleration due to gravity g = 9.81m/sec 2 . Following [5], [19] and [20], it is 

considered that the representative magnetic fluid at a reference temperature 300 Κ0  (27 0 C ) has 

the following physical properties: The fluid density ∞ρ , at the free steam is ∞ρ =1180 kgr/m 3 , 

the coefficient of the thermal expansion β  of the fluid is 45.6 10−β = ⋅  0 Κ 1− , the viscosity of the 

fluid ∞μ  is ∞μ =0.007 Kgr m-1 ⋅ sec-1, the coefficient of thermal diffusion is a = 1.19x 710− 2 1m sec−  

and the specific heat under constant pressure is pc = 4180 Jkgr-1. Under these assumptions the 

free stream kinematics viscosity of the fluid is ∞
∞

∞

μ
ν =

ρ
 = 5.932x 6 2 110 m sec− −  and the Prandtl 

number is Pr = 49.832. 

     On the other hand, following [20] and assuming that the value 0H  of the magnetic field 

intensity at the point 0 0 0(x , y ,z ) ( ,0,z)= α , i.e. 
20

1
2

)0,(
b

IaHH
π

== , that saturates the 

magnetic fluid, is about 1.3x 610 A / m and the magnetic susceptibility χ  of the liquid carrier 

(water), at 20 0 C  and in the S.I., is χ = 9.04x 610− ,  the magnetic parameter Mn  takes the value 

Mn =0.12. Also, the constant c in the transformation (x) cxξ = , defined as 2/)( ∞∞−= uTTgc wβ  

(equation (10)) and the constant d, defined as d =
∞

∞

u
cν , take the values c = 3.6624 and d = 

8.5084x 310− , respectively. The above considerations permit us to adopt values for the above 
parameters that correspond to a realistic case scenario. For the numerical solution we 
additionally take into consideration the physically realistic case of negative χ values discussed 

above. Thus, we also consider the case of χ = -9.04x 610−  resulting to Mn =-0.12 

     For the viscosity/temperature parameter rΘ , following [30] and [42], it is assumed that it 

takes the values rΘ = -20.0 and rΘ = -0.60. The first value corresponds to the case in which the 

viscosity of the fluid is not affected by the temperature variations (μ = ∞μ =constant), whereas the 

second one corresponds to the case in which the viscosity of the fluid is sensitive to temperature 

variations. The thermal/conductivity parameter, )(*
∞−= TTsS w , for this choice of the liquid 

carrier (water) and for the operating temperature difference ∞Τ−Τ=ΔΤ w = 60 Κ0 , takes the 

value *S = 0.12, [6], [20] and [35]. The value *S = s =0.0 corresponds to the case in which the 

thermal conductivity of the fluid is not sensitive to temperature variations ( k k∞= = constant). 

     Finally, for both Cases I and II, it is assumed that the flow is laminar and this is a valid 
assumption for the cases under consideration. It is known ([35]) that the transitional Reynolds 
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number
trxR , at the start of transition, depends partly upon the turbulence in the free stream and 

greatly upon the surface conditions such as heating or cooling and smoothness or roughness of 

the plate.  Transitional Reynolds number 
trxR  may be as low as 54x10  or as high as 64x10 . If the 

plate is heated, as in the cases under consideration, the location of natural transition in a gas flow 
moves upstream, decreasing the value of the transitional Reynolds number, whereas if the plate 
is cooled, the location of transition moves downstream. The reason is that since μ rises with gas 
temperature, the velocity gradient near the wall is reduced by heating, distorting the profile to a 
more unstable shape and for cooling, the converse holds. On the contrary, in liquid flows, μ falls 
with increasing fluid temperature and the effect is reversed. In the present study, the maximum 

value of Reynolds number ∞∞= vxux /Re , even for ′ξ _final = 12.0 or x′_final = 3.28 m, is 
51.66x10 , i.e, less than 54x10 . 

 
4.1 Case I 
     Near the leading edge the values of x or ξ are small and the boundary layer is dominated by 

the large viscous forces. In order to study the influence of the action of a localized magnetic field 
on the flow field in this region, it is assumed that the electric wire is placed at the position 
( 0 0x , y ) = (α , b) = (0.10,-0.20). Taking into account that c = 3.6624, the position of the wire in 

the transformed and dimensionless coordinate system ξηO  is ( 00 ,ηξ ) = (0.36624,-142.23). 

     The results obtained by the numerical solution of the system describing the flow near the 
leading edge, concern the dimensionless quantities of the velocity field f ( , )′ ξ η , the temperature 

field ),( ηξΘ , the skin friction coefficient 
xfC and the Nusselt number xNu . It is noted here that 

the skin friction coefficient fC  and the Nusselt number Nu  are defined by the expressions 

 
2

2
1

∞∞

=
u

C w
f

ρ

τ
   (32),   and   )(/ ∞−= TTkxqNu ww , respectively,                (33) 

where wτ is given by 0)( =∂
∂

= yw y
uμτ  (34) and w y 0

Tq (k )
y =

∂
= −

∂
  (35).      

Using equations (8) and (11)~(19) in the above expressions, the corresponding dimensionless 

quantities 
xfC  and xNu can be written as 

x

1/2 r
f f x

r

2C C Re f ( ,0)
1

Θ ′′= = ξ
Θ −

   (36)  and  1/2
x xNu NuR e ( ,0)′= = −Θ ξ   (37) 

The presented results are for Mn = 0.00, +0.12, -0.12, rΘ = -20.0, - 0.60 and *S = 0.00 and 0.12.  

     Figures 1 and 2 show the variations of the dimensionless velocity and temperature profiles, 
respectively, against the dimensionless distance η , normal to the plate and at the place ξ =0.4 

along it, i.e., in the region of the magnetic field and just after the electric wire. It is observed that 
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the fluid dimensionless velocity component f ( , )′ ξ η , parallel to the plate and inside the boundary 

layer, increases from zero, on the plate, to its limited value one, at the free stream and it is 
everywhere greater for positive values of the magnetic parameter Mn .The fluid dimensionless 

velocity component f ( , )′ ξ η  is also greater for rΘ =  - 0.60 than that for rΘ = -20.0. Hence, the 

velocity profile is influenced by the presence of the applied magnetic field and by the 

viscosity/temperature parameter rΘ . The obtained numerical results, however, showed that the 

velocity profile is not affected, appreciably, by the thermal/conductivity parameter *S . On the 

other hand, the temperature profile ( , )Θ ξ η  (Fig.2) is not affected, appreciably, by the magnetic 

parameter Mn  but increases as the thermal/conductivity parameter *S  increases from 0.00 to 

0.12 or as the viscosity/temperature parameter rΘ decreases from -0.60 to -20.0 

     Fig.3 shows the variations of the dimensionless skin friction coefficient 
xfC , against the 

dimensionless distance ξ, for *S = 0.00, rΘ = -0.60, -20.0 and for different values of the magnetic 

number Mn . The corresponding variations for the dimensionless heat transfer coefficient 

(Nusselt number) xNu , are shown in Fig.4. Both quantities increase almost linearly with ξ  in 

the absence of a magnetic field ( Mn  = 0.0) presenting, however, a different way of variation in 
the presence of it. For positive values of the magnetic parameter Mn  and near the leading edge 

of the plate (0< ξ< ~ 0.48), the values of 
xfC as well as of xNu  are greater than those for zero on 

negative values of Mn . However, the opposite is true for large values of ξ  ( ξ> ~ 0.48). On the 

other hand, the values of 
xfC , for every value of the magnetic parameter Mn , are greater when 

rΘ = -20.0 than those when rΘ = -0.60. The opposite is true, though, for the values of xNu .  It is 

reminded that when rΘ  is large, the viscosity variation in the boundary layer is negligible but 

as −→Θ 0r , the viscosity variation becomes increasingly significant. Thus, from Figs.3 and 4 it 

is concluded that the effect of increasing the sensitivity of viscosity to temperature, through the 

parameter rΘ , is different for 
xfC  and xNu . The skin friction coefficient is everywhere 

increased as rΘ  increases, whereas the Nusselt number decreases as rΘ  increases. 

     Finally, the numerical investigation of the problem under consideration showed that the skin 
friction coefficient is not influenced, appreciably, by the variation of the thermal/conductivity 

parameter *S . On the contrary, the Nusselt number varies appreciably with *S .  These variations 

for 
xfC  and xNu , are shown in Figs. 5 and 6, respectively, for different values of Mn and for 

r 20.0Θ = − . It is worth noting that the values of xNu , for every value of the magnetic parameter 

Mn , are greater when *S = 0.00 than those when *S = 0.12.  
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4.2 Case II 
     In this case the boundary layer is studied far from the leading edge of the plate where the 
effects of buoyancy forces increase and the values of x or ξ are large (8.0 < ξ< 12.0) . The 

electric wire is placed now at the position ( 0 0x , y ) = (α , b) = (2.50,-0.20) or in the transformed 

and dimensionless coordinate system Oξζ  at ( 0 0,ξ ζ ) = (9.16,-78.26). The dimensionless 

quantities 
xfC  and xNu , in this case, can be written, (transformations of (24) and (25)), as 

x

1
r4

f f
r

2C C / (d ) F ( ,0)
1

Θ ′′= ξ = ξ
Θ −

   (38)  and  
3
4

xNu Nud / ( ,0)′= ξ = −Θ ξ ,  (39) 

where fC  and Nu are defined by (32) and (33), respectively, and the constant d is d =
∞

∞

u
cν  . 

     The obtained numerical results concern the dimensionless “velocity” field 'F ( , )ξ ζ = 

( u / u∞ )/ ξ , the temperature field ( , )Θ ξ ζ , the skin friction coefficient 
xfC  and the Nusselt 

number xNu  and are presented in Figures 1~8 for the same values of the dimensionless 

parameters Mn , rΘ  and *S  as in Case I. The variation of the dimensionless profiles F ( , )′ ξ ζ  

against ζ  and at the distance ξ = 8.0, in the region of the magnetic field and just before the 

electric wire, are presented in Fig.1 and 2. Figure 1 shows three representative profiles for rΘ = -

20.0, *S = 0.00 and Mn = 0.00, +0.12 and -0.12.  It is reminded here that the limited value of 

F ( , )′ ξ ζ  as ∞ζ → ζ  ( ∞ζ = 10.0), is not 1 as in Case I but 1/ ξ  (boundary condition (29)). It is 

observed that, as in the case of forced convection flow regime, F ( , )′ ξ ζ  is always greater for 

positive value of the magnetic parameter Mn  than those for zero or negative values. However, 

the influence of Mn  on F ( , )′ ξ ζ  is more evident in the free convection flow regime. It is also 

worth noting that the velocity profiles in the case under discussion (large values of ξ) are of 
different shape than those of Case I. This is due to the fact that the fluid flow now is dominated 
by the free convection currents and not by the viscous forces as it happens in Case I. 
     The influence of the viscosity/temperature parameter rΘ  as well as of the thermal 

conductivity/parameter *S , on the velocity field, is shown in Fig.2. It is concluded that, as in 

Case I, F ( , )′ ξ ζ  is more sensitive in variations of rΘ  than that of *S . The dependence of the 

temperature profile ( , )Θ ξ ζ  on the magnetic parameter Mn , on the viscosity/temperature 

parameter rΘ  and on the thermal/conductivity parameter *S , is shown in Figs. 3 and 4, 

respectively. The influence of these parameters on the temperature field is similar to that on the 
velocity field. 

     The variations of the skin friction coefficient 
xfC , against ξ , for a positive and negative value 

of the magnetic parameter Mn  as well as for 0.0=Mn  and for different values of the 
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viscosity/temperature parameter rΘ , are presented in Fig.5. The corresponding variations of the 

dimensionless heat transfer coefficient xNu  are presented in Fig. 6. Both quantities decrease 

almost linearly with ξ  in the absence of a magnetic field ( Mn  = 0.0). However, in the presence 

of the magnetic field, both quantities are influenced by its presence and especially in the region 

where the magnetic source is located ( 0 9.156)ξ = . It is remarkable that when Mn = +0.12, 
xfC  as 

well as xNu  increases rapidly with the dimensionless distance ξ   from the leading edge of the 

vertical plate, taking their maximum value in the region where the wire is placed ( 8.8ξ � ). A 

little far downstream, a corresponding decrement takes place up to the point where they take 

their minimum value. After that point, 
xfC  and xNu  are increased but their values remain lower 

than the corresponding ones in the absence of the magnetic field. The opposite happens when 

Mn = -0.12. It is also remarkable that when Mn 0.12= − , both 
xfC   and xNu  take their minimum 

value for a value of ξ , i.e. just before the point 0ξξ =  but after the point where they take their 

maximum value for Mn 0.12= . Finally, it should be noted that, as in Case I, the values of
xfC , 

for every value of the magnetic parameter Mn , are greater when rΘ = -20.0 than those when 

rΘ = -0.60. The opposite, however, is true for the values of xNu . 

     The variation of the above mentioned quantities 
xfC  and xNu  for a positive and negative 

value of the magnetic parameter Mn  as well as for 0.0=Mn and for different values of the 

thermal/conductivity parameter *S , are presented in Figs. 7 and 8, respectively. It is concluded 

that for every value of the magnetic parameter Mn  the values of the skin friction coefficient 
xfC  

increase as the values of the thermal/conductivity parameter *S  increases from 0.00 to 0.12 

whereas the values of the dimensionless heat transfer coefficient xNu  decreases. It is worth 

noting however, that xNu  is much more sensitive in variations of the values of the 

thermal/conductivity parameter *S  than 
xfC  and this is true for every value of the magnetic 

parameter Mn . 
  

5. Conclusions  
The important results, for both Cases, of the problem under consideration are summarized as 

follows: The dimensionless skin friction coefficient
xfC , as well as the dimensionless heat 

transfer coefficient xNu , is influenced by the presence of the magnetic field and especially in the 

region where the magnetic source is located. This influence is more evident for large values of 
the dimensionless distance ξ  or in the free convection flow region. The effect of increasing the 

sensitivity of viscosity on temperature, through the parameter rΘ , is different for 
xfC  and xNu . 
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The skin friction coefficient is everywhere decreased as rΘ  increases, whereas the Nusselt 

number increases as rΘ  increases. In the forced convection flow region as well as in the free 

convection flow region, the velocity profile increases as the magnetic number Mn  increases. 

This increment is more evident for large values of the dimensionless distance ξ  or in the free 

convection flow region. On the other hand, the influence of the magnetic number Mn  is almost 
negligible on temperature profiles. The effect of increasing the sensitivity of viscosity on 

temperature, through the parameter rΘ , is different for the velocity field and temperature field. 

The velocity of the fluid is everywhere increased as rΘ  increases whereas the temperature of the 

fluid decreases as rΘ  increases. The effect of increasing the sensitivity of thermal conductivity 

on temperature, through the parameter *S , is the same for the velocity field as well as for the 

temperature field. Both quantities are increased as the thermal/conductivity parameter *S  
increases. However, the influence of this parameter is more evident on temperature profiles. 
When the magnetic fluid exhibits diamagnetic behavior (χ<0 or Mn <0), the effect of the 
magnetic number Mn on the flow field, is different, qualitatively and quantitatively, with respect 
to that in the case of a paramagnetic behavior (χ>0 or Mn >0). The velocity field as well as the 
skin friction coefficient is not influenced, appreciably, by the variation of the 

thermal/conductivity parameter *S . The temperature profile as well as the Nusselt number varies 

with *S . The influence of the thermal/conductivity parameter *S  on Nusselt number though, is 
more evident than the corresponding one on the temperature profile. The numerical study of the 
problem under consideration showed that the magnetic fluid flow is appreciably influenced by 

the viscosity/temperature parameter rΘ  as well as by the thermal/conductivity parameter *S  and 

that to predict more accurate results the variable viscosity and thermal conductivity have to be 
taken into consideration in a magnetic fluid flow. 
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Figures Captions 
Case I 

Fig.1: Variations of the dimensionless velocity profile 'f ( , )ξ η , with the dimensionless distance η , for 
different values of the magnetic number  Mn and the viscosity/temperature parameter rΘ . 
Fig.2: Variations of the dimensionless temperature profile ( , )Θ ξ η  with the dimensionless distance η , for 

different values of the viscosity/temperature parameter rΘ  and the thermal/conductivity parameter *S . 
Fig.3: Variations of the dimensionless skin friction coefficient 

xfC , with the dimensionless distance ξ , 

for different values of the magnetic number Mn  and the viscosity/temperature parameter rΘ . 
Fig.4: Variations of the dimensionless Nusselt number xNu , with the dimensionless distance ξ , for 
different values of the magnetic number Mn  and viscosity/temperature parameter rΘ  . 
Fig.5: Variations of the dimensionless skin friction coefficient 

xfC , with the dimensionless distance ξ , 

for different values of the magnetic number Mn  and the thermal/conductivity parameter *S . 
Fig.6: Variations of the dimensionless Nusselt number xNu , with the dimensionless distance ξ , for 

different values of the magnetic number Mn  and the thermal/conductivity parameter *S . 
 

Case II 

Fig.1: Variations of the dimensionless profiles F ( , )′ ξ ζ  against ζ , for different values of the magnetic 
number Mn . 
Fig.2: Variations of the dimensionless profiles F ( , )′ ξ ζ  against ζ , for different values of the 
viscosity/temperature parameter rΘ and the thermal/conductivity parameter *S . 
 Fig.3: Variations of the dimensionless temperature profile ( , )Θ ξ ζ  against ζ , for different values of the 
magnetic number Mn . 
Fig.4: Variations of the dimensionless temperature profile ( , )Θ ξ ζ  against ζ , for different values of the 
viscosity/temperature parameter rΘ  and the thermal/conductivity parameter *S . 
Fig.5: Variations of the dimensionless skin friction coefficient 

xfC , with the dimensionless distance ξ , 

for different values of the magnetic number Mn  and the viscosity/temperature parameter rΘ . 
Fig.6: Variations of the dimensionless Nusselt number xNu , with the dimensionless distance ξ , for 
different values of the magnetic number Mn  and viscosity/temperature parameter rΘ  . 
Fig.7: Variations of the dimensionless skin friction coefficient 

xfC , with the dimensionless distance ξ , 

for different values of the magnetic number Mn  and the thermal/conductivity parameter *S . 
Fig.8: Variations of the dimensionless Nusselt number xNu , with the dimensionless distanceξ , for 

different values of the magnetic number Mn  and the thermal/conductivity parameter *S . 
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