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In this work we study second and third order approximations of water wave equa-
tions of the Korteweg—de Vrie@&dV) type. First we derive analytical expressions

for solitary wave solutions for some special sets of parameters of the equations.
Remarkably enough, in all these approximations, the form of the solitary wave and
its amplitude-velocity dependence are identical to the sémmula of the one-
soliton solution of the KdV. Next we carry out a detailed numerical study of these
solutions using a Fourier pseudospectral method combined with a finite-difference
scheme, in parameter regions where soliton-like behavior is observed. In these
regions, we find solitary waves which are stable and behave like solitons in the
sense that they remain virtually unchanged under time evolution and mutual inter-
action. In general, these solutions sustain small oscillations in the form of radiation
waves (trailing the solitary waveand may still be regarded as stable, provided
these radiation waves do not exceed a numerical stability threshold. Instability
occurs at high enough wave speeds, when these oscillations exceed the stability
threshold already at the outset, and manifests itself as a sudden increase of these
oscillations followed by a blowup of the wave after relatively short time intervals.

© 2002 American Institute of Physic§DOI: 10.1063/1.1514387

[. INTRODUCTION

As is well known, the Korteweg—de Vri¢&dV) equation represents a first order approxima-
tion in the study of long wavelength, small amplitude waves of inviscid and incompressible fluids.
Furthermore, if one allows the appearance of higher order terms, more complicated wave equa-
tions can be obtained. Such an equation, including second and third order corrections, was pro-
posed in Ref. 1 and was examined, in its second order form, analytically and numerically in Refs.
2, 3, and 4. It was found that, although it is nonintegrable in general, it still possesses solitary
wave solutions, which, for small values of parameters, behave like pure solitons.

One problem mentioned in Ref. 4 was that the solitary waves of this second order equation
generally possess a nonzero background and thus might be unphysical.

In this work, we study in more detail this second order equation, as well as its third order
counterpart proposed in Ref. 1, as approximations for water wave propagation. We first apply the
Pickering algorithm® and introduce an additional arbitrary constant, which allows us to construct
zero background solitary waves for both of these equations. Thus we demonstrate the remarkable
fact that all these solutions have the same $émm and the same amplitude dependence on the
velocity as the one-soliton solution of the KdV.

We then proceed to conduct a numerical study and show that a range of parameters exists for
which these solitary waves possess soliton-like behavior, in the sense that they interact nearly
elastically with each other and are stable under small perturbations. We also demonstrate that all
these results continue to hold in the case of the third order approximation of water wave propa-
gation, for an even larger set of parameters.

Let us consider the famous KdV equation
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which constitutes a first approximation of unidirectional wave motion on the surface of a thin layer
of an inviscid and incompressible fluid. The functiofx,t) represents the amplitude of the fluid
surface with respect to its level at rest, whiteand 8 characterize, respectively, the long wave-
length and short amplitude of the waves, compared with the depth of the layer.

In order to obtain a more physically realistic form(@f one may include second order terms
in @ and B as suggested in Ref. 1

Ju  du au J°u ,du J*u Ju d%u 0
o hau—+ u— + U—s+ ps— —| =0,
gt T ax TR TR T *1 ox TaP| Pl st G

2
wherepq,p,,p3 are considered, for the time being, as free parameters. This equation holds for
a,B<1, obeyingO(B)<O(a), as, e.g.8~a?.! In Ref. 1 it was also observed thé) can be
transformed—up to terms of second ordeming—to a completely integrable partial differential
equation(pde), through a nonlinear local change of the dependent variable.

As mentioned in Refs. 2 and 3, E@) is, in general, nonintegrable in the sense that some of
its ordinary differential equatiofode)reductions do not possess the Painlpveperty and a Lax
pair does not seem to exist. However, it was still found to possess the traveling wave sbfution:

3Bk(AZ—2K)(2po+ p3)sech[ Vk(x— Ct—xq)/v2]

u(x,t)=K+ 3
(1) ap1(A— 2k tanH Vk(x— Ct—xXg)/v2])? ®)
where
2p1—2p2—p3  B(2p2tp3y)k @
2“P1(P2+P3) ap; ’
4p,—1 —2py)? 2pa(2po+ pa)k?
c P1 N (p2—2p1) +ﬂ p3(2p2+p3) ’ 5)

4p;  4py(pa+ps)? p1

andA,k,x, are arbitrary constants.

These waves were studied numerically in Ref. 4 and were found to possess, for small values
of B andk, properties of true solitons: i.e., they are stable under small perturbations and interact
elastically with each other. However, they also possess a generally nonzero “background,” given
by (4), which means that they may be thought of as unphysical, since they have infinite energy
(when integrated over the full real line).

As we show in this paper, however, this need not be true, since there are particular choices of
the p; parameters which maké€=0 and thus restore to the solitary wai® its proper physical
meaning. To establish this we use a method due to Picketiagd introduce an extra free
parameter which helps us choose theso that(3) finally becomes identical to the séeprofile of
the KdV one-soliton solution.

Entirely analogous results are obtained if we allow third order ternt2)iand study solitary
wave solutions of the pde

aquauJr au+ 3u+ ,du . 53 Ju d°u
gt ox Poxata “pau® ox TaB|pls p3ax X2
. 40U L2 073U u d%u au 0 6
u — u u— =V,
a® P4 X a“B| ps a3 +pe X &X tp7| =C (6)
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wherep,,...,p7 are again considered free parameters. This equation is also found to be valid for
0(B)<O(a),! as e.g. B~ a?, with 0<a<1.

In fact, as we show in Sec. I(6) possesses a solitary wave that has exactly the’seahn of
the KdV soliton, for certain choices of the values of the parametgrs.,p;. These solitary wave
solutions are obtained g} values which are different than the ones needed to dé€givigom the
pair of pdes of bidirectional wave propagation given by first principlesmwever, this does not
mean that solitary waves cannot be found by other analytical or numerical methods and for other
parameter values than those identified in this paper.

We then proceed, in Sec. Ill, to carry out a detailed numerical investigation of the stability of
our solutions, using a combination of a Fourier pseudospectral method in space and a finite
difference scheme in time with various step siad¢s Establishing first as maximum tolerance for
numerical stabilityE=(At)?, we regard a solitary wave as stable if the small radiation waves,
occurring due to numerical errors, do not exceed in amplitude this threshold.

Thus, we find regions of parameters for which such stable solutions exist, exhibiting small
oscillations that remain bounded for all times. However, when the amplitude of these oscillations
exceed< they are seen to exhibit a sharp increase after relatively short times, leading eventually
to blowup of the wave. In Sec. Il we also study the interaction of three such stable solitary waves
and show that they remain unchanged before and after collision, demonstrating thus their soliton-
like character. Finally in Sec. IV we summarize our conclusions and list some open questions for
future investigation.

II. ANALYTICAL EXPRESSIONS OF SOLITARY WAVE SOLUTIONS

In order to obtain explicit expressions for solitary wave solutions we shall employ Pickering’s
algorithm®® which was also used in Ref. 3 for the derivation of the solu®r-(5). As can be
seen in(4), however, for specific values @fa and 8, K becomes zero only for one value lof
This means that such solutions would exist only for one particular velocity, which is inconsistent
with what one finds for the soliton solutions of the KdV. It is possible, however, to obtain a zero
background for a wider set d&f values by introducing an additional arbitrary constan{4i as
follows:

If we consider a truncated expansion of the solutiorifof the form

_Yo U 2
u(x,t)—?+?+u2+u3z+u4z , (7)

where theu;’s are constants anzi=z(x,t) satisfies the equations

z,=1-Az-BZ,
zz=—C+ACz+BC?Z (8)
with A, B, andC also free constants, we can allow one of théo be arbitrary. This happens, for
example, if
p1=0 andpz=—2p,, 9)
in which caseu, is arbitrary and
aup+12b

1
U]_:_AUO, UZZTZ(AZ_SB)UO_ U3:U4:0.

12abp, ’

Substituting relatior(7) in (2) and using(8) we finally obtain
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B1(A2—4B;)u, seck[ VB (Xx—Ct—x)]
(A—2B; tant VB (x—Ct—xo)])?

(where we have sdéb; =B+ 3A?) with

u(x,t)y=K-—

K= 1+14
T ap, 12

.
— — | Ug,
b Bpa) °

p2_1 a’UO 4 2
= - + = aBBipoUg,
P 12ﬂp2 3 B 1P2Y0

Xg being the arbitrary location of the “center” of the wave. We can now force the background to
be zero K=0) by choosing

128 10)
u -_—_—
° a(4Bp,B1—1)
(henceuy is no longer arbitraryand conclude with the solution
B1(A%—4B;)ug sech[ VB, (x—Ct—x
R3U,: u(xt)= B 1)U sech[ VBy( o] an

(A—21/B; tant B (x— Ct—xg)])?
where
C=1+4pB;

is the velocity of the traveling wave.
Observe thaf11) can in fact be written in the form of the well-known séeliton solution
of the KdV (1) by a simple transformation: Writing

hé A d sinhy 28, for A>>4B
CoOsSNhf= ———= and siIn= ——— = 10r
JAZ=4B, JAZ=4B, '

and shiftingx, appropriately(11) is easily seen to take the form

1 /C-1
z T(X—CI_XO)

which is exactly the one-soliton solution of the KdVds=0 in which casg2) reduces exactly
to (1).

In the expansion7) of the Pickering algorithm we may alternatively consider as an
arbitrary constant, by setting

3(C—1)
a(=1+(C—=1)py)

u(x,t)=— sech

p2=2p1 and ps3=—2p; (12)
and thus obtain explicit solutions ¢8) even in the casp,# 0. Conditions(12) then lead to the
solution

128B,(A%2—4B,)sech[ VB(x—Ct—Xq)]
u(x,t)y=K+

a(A—=24B; tant VB;(x—Ct—x)])?
where
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3B(A’—4B
K= B( 1)+u2,
o
C=1+3A%B8—88B;+ au,+p,(3A?B—128B;+ au,)(3A?B—48B;+ au,),

andA,B;,X, are again arbitrary constants. Zero background is obtained by setting

3B(A%?—-4B
= - PAEE) (13)
o
whence we arrive at the expression
128B,(A%—4B,)sech[ VB, (x—Ct—x
R3U2: u(x.t)= 2B 1)sechl By 0] 14

a(A—2B; tan VB, (x—Ct—x()])2 '

where the velocity of the wave is agat=1+48B;.

It is worth remarking here that if, instead of applying Pickering’s approach, we were to
consider the traveling wave reductions @), u(x,t)=f(x—Ct), for the choice of parameters
(12), we can integrate the resulting ode and discover, by a simple phase plane analysis, that it
possesses a separatrix along which the solution is

1 /C-1
> B (x—Ct—xg)

This is exactly the same as the s&sbliton solution of KdV(1) for all p; and also coincides with
(14), forC=1+4p8B, if we shift x, appropriately, as explained belddsl).

Finally, let us turn to the third order equatidf). Here it is important to point out that a
traveling wave reduction and a derivation of the solitary wave form as done above appears to be
quite difficult, as the associated odes are too cumbersome to integrate exactly. Thus we need to
turn to the application of Pickering’s algorithm and show, as before, upatA, andB remain
arbitrary iff p; satisfy the following relations:

. (15)

u(x,t)= &.:Dsecﬁ

p3=2(p1—p2), pa=0, ps=2pi(p2—2p1),
ps=6p1(2p1—p2), p7=3p1(p2—2p1), (16)
whence the corresponding solution takes the form
B1(A2—4B;)u, sech[ VB, (X—Ct—x)]
(A—2yB; tan VB (x—Ct—xo)])?

whereK and C depend on the parameters of the equation and the arbitrary consgams and
B,. The zero background solutioiK & 0) arises if we set

u(x,t)y=K-—

128 a7
u = 1
O @(48B1p,—8BB1p;—1)
whence we finally obtain
B1(A?—4B;)ugsech[ VB, (x—Ct—x
RIUO: u(x.t)=— B2 1)Ug sech VB 0] (18

(A—24B; tanH yB;(x—Ct—x0)])2

with C=1+4pB; again the velocity of the wave. Note that, wjth= 0, solution(18) with (17)
coincides exactly wit{11) and (10).
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In the same way, as with the second order equations, we may also comsideitrary and
derive the followingp; relations:

pP2=2p1, p3=—2p1, ps=3py,
(19)
pe=—6ps, p7=3pa,

whence the corresponding solution is
128B,(A%2—4B,)sech[ VB(x—Ct—Xq)]
a(A=2\B tanH VB, (x— Ct—xo)])®

whereK andC depend again on the parameters of the equation and the arbitrary constaAts
andB;. The zero background solutiotK &0) now requires

u(x,t)y=K+

3B(A%~
u,— - SPAT4BY (20)
o
and we finally obtain
2__ _ —
RTU2: U(x.)= 128B,(A?—4B;)sech[ VB (x— Ct—xo)] | @)

a(A— 2B, tanf VB (x—Ct—x,)])?

where the velocity isC=1+48B;, as in all the cases above. Again h€gd) also becomes
identical to the KdV soliton(15), with the appropriate shift of the constaq@t even though it is
the solution of a much more complicated pde.

It is important, however, to remark that tipe parameter valueg16) or (19), determined by
our approach, are quite different from the ones found in Ref. 1, by the reduction to unidirectional
flow from a pair of pdes describing bidirectional wave propagation. The reasons for this difference
remains an open question, which clearly requires further investigation.

[lI. NUMERICAL STABILITY ANALYSIS

The numerical scheme used in the current study is the same as the one employed in Ref. 4 and
is based on a combination of finite differences and a Fourier pseudospectral method. In order to
demonstrate the application of our algorithm we first describe it on the KdV equation

Ui+ Uy + auuy+ Buy,,=0 (22)

with the initial conditionu(x,0)=f(x). The time derivative in22) is discretized using a finite
difference approximation, in terms of central differences

UMt t=un - 24t U+ au"ug+ Bug,,) =0. (23)

According to the pseudospectral method, we introduce the approximate solution

N
u(x,t>=k§O a (D (x), (24)

where®,(x) =e'** are the Fourier exponentials, ang(t) are coefficients to be determined, for
k=0,1,...,N
The steps used to advance the solution from time stepn+ 1 are

(i)  Givenul=u(x;,t,) evaluateay=a(t,) from (24).
(i) Givenay evaluate the derivatives, e.§d’u/dx*]] from (24).
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(i)  Evaluate the nonlinear terms, e.g;] ou/dx]; .
(iv)  Evaluateu]™* from (23), at x=X;, t=t,, .

Step (i) is the transformation from physical space to spectral space. This transformation is
achieved by the use of a fast Fourier transf¢RRT) described in Refs. 7 and 8 with a number of
operations (5/2) log, N (N being the number of polynomialsin contrast to the B? operations
required for a matrix-vector multiplicatiohStep(ii) occurs in spectral space and the evaluation of
the nonlinear term in steii) is in physical space, thus avoiding the expensive multiplication of
all coefficients in the expansions of the fo(24). Step(iv) occurs again in physical space.

The accuracy of our numerical scheme for the time variabgO((At)?), due to central
differences and for the space variablewhere we use the pseudospectral meti@fe V),
whereq is a constant.Numerical calculations were carried out for various numbers of polyno-
mialsN= 128, 256, 512, and 1024 and time stéyts=0.0001 to 0.002, while the spatial step was
chosen to be\x=1.

We should mention here that, for the time propagation of such types of problems, where the
spatial discretization is extremely accurate, the most commonly used method is the fourth order
Runke—Kutta integration scheme. Even though this method provides satisfactory results, it may
fail because of sensitivity to the initial conditions and inherent instabilities. Thus, since the sta-
bility of the waves propagating in time is of more interest than the accuracy, a more stable, central
differencing is used for the discretization in time.

In Ref. 4 we carried out several calculations to verify the efficiency of our numerical code. For
the KdV equation1) att=0 with =1, 8=0.1,X,=20 andc= 1.1, we took as initial condition

the well-known exact solitary wave solution
1 Jc—-1 (
2 \V B (X=Ct=Xo)

wherec is the propagation speed amglis an arbitrary constarf:** We observed that our wave
moves along the spatial direction retaining its initial profile for a very long time period of at least
t=2.5x10° time units with time stepAt=0.01. A three-soliton interaction was also studied and
the results were as expected from the soliton solutions of the KdV, i.e., the waves interact elasti-
cally and remain unchanged before and after their interaction. These results were obtained for
various time steps and numbers of polynomidlsmentioned above, which demonstrates that our
code reproduces accurately the fundamental properties of the KdV.

The plethora of free parameters entering into E@$.and (6) makes the study of the wave
solutions, obtained in Sec. Il, not a very easy task. However, if we impose the zero background for
our solutions, much of the redundancy is removed and'@ begin to have a more specific
meaning. Thus, we investigate the wave solufibh) for Eq. (2), with uy given by (10) and for
pi, 1=1,2,3 satisfying(9). This solution is referred to @&83U0. For the same equation we also
study the solutior{14) for u, given by (13) andp;, i =1,2,3 satisfying12), which is referred to
asR3U2. Similarly we nameéR7U0 the solution(18) of Eq. (6) with ug given by(17) and forp; ,
i=1,...,7 satisfying16) andR7U2 the solution(21) of the same equation with, given by(20)
and forp;, i=1,...,7 satisfying19).

The free parameters now present in the solutRBE/I0 andR3U2 are onlya, B, B;, andp,
for R3UO or p; for R3U2. Therefore, we will first study how they affect the stability of the
above-mentioned wave solutions, and then proceed to studg#h® andR7U2 waves, using
similar @ and B, plus p; for R7U0 andp, for R7U2.

u(x,t)= 3(C; 1 sech , (25)

A. A stability criterion

Our ultimate goal, of course, is to examine the values of the parameters in our higher order
KdV equations(2) and(6), for which the solitary wave solutions mentioned above preserve their
shape and are stable under evolution. By the term “stable” we mean that a wave solution, when
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substituted in an equation, retains its initial profile for long times, albeit with some smaller
oscillations present as radiation waves, due to unavoidable numerical errors produced under time
evolution.

Thus, in order to check stability, one way is to track the residual of the solution in time. For
the case of KdV, for example, i is an exact solution ofl) it will satisfy

Ug+ Uy + auuy+ Buy,,=0. (26)

If the approximate solutiori24), computed numerically, is substituted in®@6) it will not, of
course, give zero. Thus we write for it

Ui+ u,+ auu,+ Buy, =R,

whereR is called the residual of the equation. It is expected Ba a continuous function of
andt and if N is sufficiently large then, in principle, the coefficientg(t) can be chosen so that
Ris as small as we wish over the computational domain. In our case we evRlad&eat each
Xi, i=1,...,Ngrid point at specific time momentsg.

Due to the fact that the wave solutions are computed for sufficiently large valie$1@8 to
1024), the spatial error of the pseudospectral method is in agreement with(¢h@") estimate
mentioned above, and is practically zero. The maximum absolute residual, which we refer to as the
error, E=max|R|, will increase due to the central differencing in time, but cannot be greater than
O((At)?). Several tests have been made for the wave sol@@ibnof the KdV verifying that for
various values oN (128 to 1024)and time stepAt=0.0001 to 0.02E<(At)? at least for a time
period of 16 time units.

Therefore, a practical way to verify that a wave solution is stable is to check if the error
remains, for long times, less thad((At)?). If E increases above this value already from the
outset, oscillations will soon grow and become unbounded after relatively short times, not only
because of the numerical scheme, but also due to the nonlinear nature of the equations, suggesting
that the initial wave solution has become unstaiblas is also supported by the fact that blowup
occurs nearly at the same times, irrespective of the values afxhend At step sizes used in the
numerical scheme.

B. Solutions R3UO and R3U2

Let us now proceed to the study BB solutions. In all that follows3, satisfies the relations
B,>0 andA> /2B, which are vital in order to have a bounded wave solution. The parameter
does not affect the stability of the wave and in all cases is t#&kes3.

One way to examine the stability of solutions under investigation is ta,sg@tfixed and start
to increaseB,, the velocity of the wave, by a quantityB,. Each time we increas®,, we track
the errorE for a period of time: If it remains belowAt)?, we consider that the wave is stable for
this period, and proceed to increaBgby anotherA B, until E becomes greater than{)2. Once
this happens, we s&B,=AB/2, decreas8, by AB, and track the error again. In that way, we
determine, up to an accuraey(AB;<g), the maximum value 0B, (speed)BT™®, for which the
solitary wave is stable.

The period of time used in the current study is 500 time units, with time &tep0.001 and
accuracye =0.001. Several tests have been made, e.g., with the KdV, using cases where the exact
solution is known to be stable, and as expected, the valig'df, estimated in the above way,
depends neither on the time stap, nor on the number of pointd we use.

Figure 1 shows the variation &> with « for various values of3. The parametes, is fixed
equal to 1. It is observed that asncrease®8]'® is increasing for small values @ The variation
of Bf'"™ with « is smaller as3 increases and finally no significant changes are observed y@hen
>0.2. Thus, it can be concluded thahas a stabilizing effect on the solutions, especially for low
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FIG. 1. Variation ofB"® of solutionR3UO with «.

values ofg, since its increase makes the range of velocities larger for stable soliton-like iaves
the range of 823=<0.1). The region below each cur{glotted by interpolationjs the region of
stability of the wave solution for the corresponding values of parameters.

The variation of theB™® with g for various values ofr is shown in Fig. 2. Unlike what was
observed fore in Fig. 1, we find thaB]'® decays exponentially with the increase@fand the
region where the wave solution is stable is larger for greater valuas Bfius we conclude that
increasingB has a destabilizing effect on the solitary waves. The parametsragain kept equal
to 1. The variation oB" for the solutionR3U2 with a or B is qualitatively the same as that for
R3UO0, and any quantitative differences with Figs. 1 and 2 are insignificant.

Similar results were also observed for tREUO andR7U2 solutions. However, because of
the additionalp; parameters present in these cases, a direct comparison wiiBtlselutions is
not easy to demonstrate pictorially.

It is important to note that these findings are in good agreement with the conditions of the
validity of (2) and (6), i.e., thatO(B)<O(a).! In fact, using3~a? is seen to yield optimal
results in terms of the size of stability regions of our solitary wave solutions.

2,5 1
B1
+ o=
« =086
154 » a=03

\ v w=01 R3UD I

FIG. 2. Variation ofB"® of solutionR3UO with 8.
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FIG. 3. Variation ofB* with p, for R3UO andp, for R3U2.

In order to examine the effect @f, on R3UO or p; on R3U2 we can setx=1, 3=0.1 and
find B]'® while varying the corresponding; . Figure 3 shows this variation &} with p, for
R3UO andp; for R3U2 solitary wave solutions. It is found that for an increase of the corre-
spondingp; up to 0.4 there are no significant changes. Whenpthiecrease beyond 0.4 a rapid
decrease oB]'® takes place. This decrease stoppat 1.2 for theR3U2 solution, while, in the
case ofR3UO it continues untilp, reaches the value of approximately 1.7.

It is worth mentioning that the results plotted in Figs. 1-3 uskig-0.001 and\N =128, are
also obtained for time steps 0.0001, 0.002, and number of points 256 and 512.

C. Error behavior during wave propagation

Before proceeding to thR7 solutions, let us discuss some results concerning the error crite-
rion of Sec. Il A, in order to understand how wave solutions propagate in time and which of them
are considered as stable. The results described below were obtainedR3itlBesolution, but are
similar to what is observed fdR7U?2.

] At
Rl \ T Y =
L mm
Sl BRVATRTRTAVATRTRTATE)
500107 - S
o 0 2 3 40 elo. 0 w0 9% ‘160'11|o

FIG. 4. Error variation with time for three different values®f. The caseB;=0.5 lies just above the boundary of the
stability regionE< (At)2.

Downloaded 26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 43, No. 12, December 2002 Soliton-like solutions of KdV type equations 6161

0.35 - 0,35
u(x.b
0.30 4 0,30 -
u(x,t
0.25 4 0.25
=15 |
0.20 A ! 0.20 -
=75
0.15 4 0,15 -
0.10 4 \ R7U0 |
®=0.5 B=005 dt=21x10°
0.05 4 i \ p1=10 p220.2 B1=03
0.00 / u‘ouJ, \
T v ———r— - T i T ; T u T T
0 20 40 VL 100 120 0 20 40 60 80 100 120
9.5 4 n,sw X
u(x,t)
04 04 {
u(x,b
031 =15 0.3 -t=75
0.2 02
Equation: R7U0
0.1 4 @=0.5 p=0.05 di=1x10°
) \ p1=10 p2s0.2 B1=0.5
00 et 0o -L M———’) e
T T v T T T b T T T T v T
[ 20 40 60 1 100 120 20 40 60 X 80 100 120
104 1.0 4
ux9 u(x.t)
0.8 0.8
=15
0.6+ 0.6
=75
0.4 4 0.4

@=0.5 (=005 dt=1x10"

RTVO
; p1=10 p2=02 BI=1§

0.0 WV‘N&’\/\/\ _/./

T T T T
Q 20 40 60 X 80 100 120 0 20 40 60 X 80 100 120

00 t\w«v\/u\/\/\/\/vvw\/v\/\/\/\/\/\f A N ey
T

FIG. 5. Evolution ofR7UO0 in time forB,;=0.3, 0.5, and 1.5, respectively.

We seta=0.5,83=0.05,p,=1, p,=0.2 and track the error ®®7U0 for a period of time of
100 time units, with time stept=0.001, and three different values Bf, namely 0.3, 0.5, and
0.7. The variation of the errors for these cases are shown in Fig. 4. Note that the erByr for
=0.3 is less thanAt)?=1x10"®.

Figure 5 shows thdR7U0 solution propagating in time foB, equal to 0.3, 0.5 and 1.5,
respectively, for the same values of the other parameters as above. It is observed Bat for
=0.3 the wave remains virtually unchanged in time and is therefore considered stable, with its
radiation waves remaining smaller thait}? for very long times. On the other hand, in the case
B,=0.5, bounded oscillations appear where the error slightly exceteds.(We call this solution
unstable, because its radiation waves grow as time increases and become unbounded after a
relatively short time. Similarly, foB,;=1.5, where these oscillations are even larger at the begin-
ning, blowup occurs after a much shorter time interval. We remark once more that analogous
results are obtained for different time steps, and also for the same time step and greater values
of N.

It is important to mention that for smaB(8<0.1) and largen(a@~1) oscillations appear,
even when the erroE does not exceedAt)2. These oscillations remain almost the same for a
time period comparable to the one used to test the stability of the solutions of KdV. Moreover,
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FIG. 6. Evolution ofR7UO0 in time forB;=0.19.

even wherE~ (At)? (and8 small enoughpscillations can persist over long time intervals as seen
in Fig. 5, with 8=0.05, where the oscillations occurring f&;=1.5 remain unchanged and
bounded well beyond value ot 75 shown in the figure.

However, if the error grows sharply at some point in time, this implies that the oscillation will
become unbounded soon thereafter leading to a blowup of the solution. Figure 6 shows the
propagation ofR7U0 for «=0.5, 5=0.4, p;=1 and p,=0.2. In this caseB]'*~0.156, as
estimated by the method described above. Consequently, if wB;s€0.19 error oscillations
suddenly explode at~50 causing the wave amplitude to increase whilé~-aB0 the solution
blows up. The same behavior is observedA&drvarying from 0.0001 to 0.002 ard from 128 to
512 indicating that this is not a numerical blowup.

As in the case oR7U0 shown in Fig. 6, we have also observed from numerous tests, that if
the wave is to blow up, the error will suddenly increase by 2—3 orders of magnitude within the
first 200 time units. In some examples, blowup occurs after thousands of time units, but is
predicted by our error analysis already within the first 200 time units. Thus, for the calculation of
stability results, we adopt the time period of 500 time units of nhumerical integration.

In order to investigate the stability of tl7 solutions we keep the values @fand g fixed at
a=1, B=0.1. Moreover, we considgr,;=0.2 andp,=0.2 for R7U2 andR7UO0, respectively.
Consequently, the independent parametersparfor R7UQO andp, for R7U2. The variation of
BT with p, for R7UO andp, with R7U2 is shown in Fig. 7. It is found that the growth pf
in R7UO0 results in an increase &7, whereas increasing, in R7U2 solution results in a
decrease oB]'®. For relatively large values of the correspondingthe stability regions differ
considerably and for values greater than unity the corresporffliycan be 4 times greater for
R7UO than that ofR7U2.

D. Elastic three wave interactions

In Ref. 4 a three-wave interaction was performed with &9, using its solutior(3) as initial
condition for the three solitary waves. It was reported that due to the different backgrounds of the
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FIG. 7. Variation of theBT® with p,, for R7U0 andp, for R7U2.

waves a slight displacement of each solution by a constant had to be applied. This can now be
avoided using the zero background wave solutions we have obtained here. Thus, we study here the
interactions of solitary waves of the forti5), using the third order KdV equatids).

A preliminary investigation of th&®7 solutions suggests using tRFUO solitary wave, since
its stability region increases with increasipg, provided we keep the difference betwggnand
po small. The reason is that the additional nonlinear termR7k0 are multiplied byp,,...,p7
values which are smaller than thoseR#U2, and thus lead to a larger area of stability.

The next step is to specify values for theand 8 parameters. As was shown in Sec. Il, the
wave speed of propagation 8=1+48B;. Thus, the relative speed between two waves is
4B8(B,—Bj), whereC’'=1+4pB; is the velocity of the second wave. Consequently, we have to
use relatively large values @ to see an interaction within a reasonable time. Furthermore, we
have to avoid using large so as to reduce the bounded oscillations described in the preceding
section. Therefore, taking into account all these considerations we clhoe®ed, 3=0.1, p;
=0.25, andp,=0.1.

For the values of the remaining parameters wexset 10, x,=28, x3=55 andB,,=0.30,
B,,=0.20, B;3=0.06, wherex; and B4; correspond, foii=1,2,3, to the first(fastest), second
(middle), and thirdslowest)wave. The interaction of these solitary waves, as shown in Fig. 8, is
seen to occur in exactly the same way as for the KdV equation. No radiation is observed and no
differences are found in the shape of the solitary wasegore and after collisionas far as we
could determine numericallgwith At=0.01 andN=1024). These results strongly indicate the
existence of wave solutions which “behave” as true solitons in water wave equations which
represent higher order approximations to the KdV equation.

IV. CONCLUDING REMARKS

In this paper, we have studied the existence and stability of solitary wave solutions of pdes
representing second and third order approximations of unidirectional water wave propagation, in
the short amplitude, € a=a/h<1, and long wavelength limit, @ 8= (h/1)2<1 (h is the depth
of the fluid layer). To first order imv and 3, these pdes reduce to the famous KdV equation, which
is completely integrable and possesses solitary waves that interact perfectly elastically with each
other and are called solitons.

Our original motivation was the fact that these higher order KdV equations have been shown
to be equivalent to completely integrable pdes, by a local nonlinear transformation, at the same
order of approximation inx and 8.1 The question therefore naturally arises if these higher order
KdV approximations also possess solitary waves exhibiting soliton-like dynamics.
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FIG. 8. Elastic interaction of threRB7U0 solitary waves of Eq(6).

Adopting the assumptio®(a)<0O(B) (e.g., B~a?), which eliminates some dispersive
terms with higher order derivativés? we derive exact, closed form expressions for the solitary
waves valid to second and third order dnand 3 using Pickering’s algorithm?® Choosing then
specific values for the free parameters, we force these solutions to have zero background and
demonstrate the remarkable fact that they all have the samé fseahand velocity dependence
as the simple, one-soliton solution of the KdV.

Proceeding to a numerical study of their stability, we use a Fourier pseudospectral method
combined with finite difference in timewith step sizeAt) and establish a threshold of numerical
error tolerancé&E = (At)2. Thus we call a solitary wave stable if the small oscillations trailing the
wave have amplitude smaller th&hand remain bounded for very long timés500 units).

However, as the speed of the wave increases, these “radiation” oscillations also increase and
when their amplitude exceeds already at the beginning of their evolution, turn out to exhibit a
dramatic growth over relatively short timés 200 units)leading eventually to blowup of the wave
and characterizing the solution as unstable. Our results are entirely consistent with what is ob-
served for the KdV equation and also agree with the assumptioOifyat<<O(«) in these pdes.

A number of open questions remain for future investigation: What is the “physical” meaning
of the values of the free parameters, which we have chosen so that the solitary waves of these pdes
have zero background? Why are these values different from those obtained by the reduction of the
original water wave equations to unidirectional motibi? fact, we have recently observed that
the ode that gives traveling wave solutions for the second order approxinidjican be easily
integrated once and then numerically studied by phase plane analysis to give homoclinic orbits,
which correspond to solitary waves for many otheiparameters than the ones identified here.

Can such integrations be carried out also for the third order equéioto yield solitary
waves, exhibiting similar behavior and reducing to the KdV soliton@aand 8 go to zero?
Finally, among all these choices, whiphfit best the physical realization of a solitary water wave?

Another question concerns the mathematical form of the solitary waves we have obtained in
this paper: Could their simple sechxpressiongidentical for the second and third order case)
imply that they also hold in higher order approximations? Finally, is their presence related to the
fact that the corresponding approximation can be transformed to a pde which is completely
integrable to the same order in B?

In conclusion, we believe that water wave motion still remains an open and fascinating topic
of great mathematical and physical interest and hope to be able to answer some of the above
questions in a future publication.
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