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of the Korteweg–de Vries type

E. Tzirtzilakis, V. Marinakis, C. Apokis, and T. Bountis
Department of Mathematics and Center for Research and Application of Nonlinear
Systems, University of Patras, 26500 Patras, Greece

~Received 20 June 2002; accepted 20 July 2002!

In this work we study second and third order approximations of water wave equa-
tions of the Korteweg–de Vries~KdV! type. First we derive analytical expressions
for solitary wave solutions for some special sets of parameters of the equations.
Remarkably enough, in all these approximations, the form of the solitary wave and
its amplitude-velocity dependence are identical to the sech2 formula of the one-
soliton solution of the KdV. Next we carry out a detailed numerical study of these
solutions using a Fourier pseudospectral method combined with a finite-difference
scheme, in parameter regions where soliton-like behavior is observed. In these
regions, we find solitary waves which are stable and behave like solitons in the
sense that they remain virtually unchanged under time evolution and mutual inter-
action. In general, these solutions sustain small oscillations in the form of radiation
waves~trailing the solitary wave!and may still be regarded as stable, provided
these radiation waves do not exceed a numerical stability threshold. Instability
occurs at high enough wave speeds, when these oscillations exceed the stability
threshold already at the outset, and manifests itself as a sudden increase of these
oscillations followed by a blowup of the wave after relatively short time intervals.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1514387#

I. INTRODUCTION

As is well known, the Korteweg–de Vries~KdV! equation represents a first order approxim
tion in the study of long wavelength, small amplitude waves of inviscid and incompressible fl
Furthermore, if one allows the appearance of higher order terms, more complicated wave
tions can be obtained. Such an equation, including second and third order corrections, w
posed in Ref. 1 and was examined, in its second order form, analytically and numerically in
2, 3, and 4. It was found that, although it is nonintegrable in general, it still possesses s
wave solutions, which, for small values of parameters, behave like pure solitons.

One problem mentioned in Ref. 4 was that the solitary waves of this second order eq
generally possess a nonzero background and thus might be unphysical.

In this work, we study in more detail this second order equation, as well as its third
counterpart proposed in Ref. 1, as approximations for water wave propagation. We first app
Pickering algorithm5,6 and introduce an additional arbitrary constant, which allows us to cons
zero background solitary waves for both of these equations. Thus we demonstrate the rem
fact that all these solutions have the same sech2 form and the same amplitude dependence on
velocity as the one-soliton solution of the KdV.

We then proceed to conduct a numerical study and show that a range of parameters ex
which these solitary waves possess soliton-like behavior, in the sense that they interact
elastically with each other and are stable under small perturbations. We also demonstrate
these results continue to hold in the case of the third order approximation of water wave p
gation, for an even larger set of parameters.

Let us consider the famous KdV equation
61510022-2488/2002/43(12)/6151/15/$19.00 © 2002 American Institute of Physics
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which constitutes a first approximation of unidirectional wave motion on the surface of a thin
of an inviscid and incompressible fluid. The functionu(x,t) represents the amplitude of the flu
surface with respect to its level at rest, whilea andb characterize, respectively, the long wav
length and short amplitude of the waves, compared with the depth of the layer.

In order to obtain a more physically realistic form of~1! one may include second order term
in a andb as suggested in Ref. 1
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]x2D50, ~2!

wherer1 ,r2 ,r3 are considered, for the time being, as free parameters. This equation hol
a,b!1, obeyingO(b),O(a), as, e.g.,b'a2.1 In Ref. 1 it was also observed that~2! can be
transformed—up to terms of second order ina, b—to a completely integrable partial differentia
equation~pde!, through a nonlinear local change of the dependent variable.

As mentioned in Refs. 2 and 3, Eq.~2! is, in general, nonintegrable in the sense that som
its ordinary differential equation~ode!reductions do not possess the Painleve´ property and a Lax
pair does not seem to exist. However, it was still found to possess the traveling wave solu3,4

u~x,t !5K1
3bk~A222k!~2r21r3!sech2@Ak~x2Ct2x0!/&#

ar1~A2A2k tanh@Ak~x2Ct2x0!/&# !2
, ~3!

where

K5
2r122r22r3

2ar1~r21r3!
2

b~2r21r3!k

ar1
, ~4!

C5
4r121

4r1
1

~r222r1!2

4r1~r21r3!2 1
b2r3~2r21r3!k2

r1
, ~5!

andA,k,x0 are arbitrary constants.
These waves were studied numerically in Ref. 4 and were found to possess, for small

of b andk, properties of true solitons: i.e., they are stable under small perturbations and in
elastically with each other. However, they also possess a generally nonzero ‘‘background,’’
by ~4!, which means that they may be thought of as unphysical, since they have infinite e
~when integrated over the full real line!.

As we show in this paper, however, this need not be true, since there are particular cho
the r i parameters which makeK50 and thus restore to the solitary wave~3! its proper physical
meaning. To establish this we use a method due to Pickering5,6 and introduce an extra fre
parameter which helps us choose ther i so that~3! finally becomes identical to the sech2-profile of
the KdV one-soliton solution.

Entirely analogous results are obtained if we allow third order terms in~2! and study solitary
wave solutions of the pde
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wherer1 ,...,r7 are again considered free parameters. This equation is also found to be va
O(b),O(a),1 as e.g.,b'a2, with 0,a<1.

In fact, as we show in Sec. II,~6! possesses a solitary wave that has exactly the sech2-form of
the KdV soliton, for certain choices of the values of the parametersr1 ,...,r7 . These solitary wave
solutions are obtained atr i values which are different than the ones needed to derive~6! from the
pair of pdes of bidirectional wave propagation given by first principles.1 However, this does no
mean that solitary waves cannot be found by other analytical or numerical methods and fo
parameter values than those identified in this paper.

We then proceed, in Sec. III, to carry out a detailed numerical investigation of the stabil
our solutions, using a combination of a Fourier pseudospectral method in space and a
difference scheme in time with various step sizesDt. Establishing first as maximum tolerance f
numerical stability,E5(Dt)2, we regard a solitary wave as stable if the small radiation wa
occurring due to numerical errors, do not exceed in amplitude this threshold.

Thus, we find regions of parameters for which such stable solutions exist, exhibiting
oscillations that remain bounded for all times. However, when the amplitude of these oscill
exceedsE they are seen to exhibit a sharp increase after relatively short times, leading even
to blowup of the wave. In Sec. III we also study the interaction of three such stable solitary w
and show that they remain unchanged before and after collision, demonstrating thus their s
like character. Finally in Sec. IV we summarize our conclusions and list some open questio
future investigation.

II. ANALYTICAL EXPRESSIONS OF SOLITARY WAVE SOLUTIONS

In order to obtain explicit expressions for solitary wave solutions we shall employ Picker
algorithm,5,6 which was also used in Ref. 3 for the derivation of the solution~3!–~5!. As can be
seen in~4!, however, for specific values ofr ia andb, K becomes zero only for one value ofk.
This means that such solutions would exist only for one particular velocity, which is incons
with what one finds for the soliton solutions of the KdV. It is possible, however, to obtain a
background for a wider set ofk values by introducing an additional arbitrary constant in~4!, as
follows:

If we consider a truncated expansion of the solution of~2! of the form

u~x,t !5
u0

z2 1
u1

z
1u21u3z1u4z2, ~7!

where theui ’s are constants andz5z(x,t) satisfies the equations

zx512Az2Bz2,

zt52C1ACz1BCz2 ~8!

with A, B, andC also free constants, we can allow one of theui to be arbitrary. This happens, fo
example, if

r150 and r3522r2 , ~9!

in which caseu0 is arbitrary and

u152Au0 , u25
1

12
~A228B!u02

au0112b

12abr2
, u35u450.

Substituting relation~7! in ~2! and using~8! we finally obtain
26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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u~x,t !5K2
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2

~where we have setB15B1 1
4A

2) with

K52
1

ar2
1

1

12S 4B12
1

br2
Du0 ,

C5
r221

r2
2

au0

12br2
1

4

3
abB1

2r2u0 ,

x0 being the arbitrary location of the ‘‘center’’ of the wave. We can now force the backgroun
be zero (K50) by choosing

u05
12b

a~4br2B121!
~10!

~henceu0 is no longer arbitrary!and conclude with the solution

R3U0 : u~x,t !52
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
, ~11!

where

C5114bB1

is the velocity of the traveling wave.
Observe that~11! can in fact be written in the form of the well-known sech2-soliton solution

of the KdV ~1! by a simple transformation: Writing

coshu5
A

AA224B1

and sinhu5
2AB1

AA224B1

for A2.4B1

and shiftingx0 appropriately,~11! is easily seen to take the form

u~x,t !52
3~C21!

a~211~C21!r2!
sech2F1

2
AC21

b
~x2Ct2x0!G

which is exactly the one-soliton solution of the KdV ifr250 in which case~2! reduces exactly
to ~1!.

In the expansion~7! of the Pickering algorithm we may alternatively consideru2 as an
arbitrary constant, by setting

r252r1 and r3522r1 ~12!

and thus obtain explicit solutions of~3! even in the caser1Þ0. Conditions~12! then lead to the
solution

u~x,t !5K1
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

where
26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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K5
3b~A224B1!

a
1u2 ,

C5113A2b28bB11au21r1~3A2b212bB11au2!~3A2b24bB11au2!,

andA,B1 ,x0 are again arbitrary constants. Zero background is obtained by setting

u252
3b~A224B1!

a
, ~13!

whence we arrive at the expression

R3U2: u~x,t !5
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2 , ~14!

where the velocity of the wave is againC5114bB1 .
It is worth remarking here that if, instead of applying Pickering’s approach, we wer

consider the traveling wave reductions of~2!, u(x,t)5 f (x2Ct), for the choice of parameter
~12!, we can integrate the resulting ode and discover, by a simple phase plane analysis
possesses a separatrix along which the solution is

u~x,t !5
3~C21!

a
sech2F1

2
AC21

b
~x2Ct2x0!G . ~15!

This is exactly the same as the sech2-soliton solution of KdV~1! for all r1 and also coincides with
~14!, for C5114bB1 if we shift x0 appropriately, as explained below~11!.

Finally, let us turn to the third order equation~6!. Here it is important to point out that
traveling wave reduction and a derivation of the solitary wave form as done above appear
quite difficult, as the associated odes are too cumbersome to integrate exactly. Thus we
turn to the application of Pickering’s algorithm and show, as before, thatu0 , A, andB remain
arbitrary iff r i satisfy the following relations:

r352~r12r2!, r450, r552r1~r222r1!,

r656r1~2r12r2!, r753r1~r222r1!, ~16!

whence the corresponding solution takes the form

u~x,t !5K2
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

whereK andC depend on the parameters of the equation and the arbitrary constantsu0 , A, and
B1 . The zero background solution (K50) arises if we set

u05
12b

a~4bB1r228bB1r121!
, ~17!

whence we finally obtain

R7U0: u~x,t !52
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
~18!

with C5114bB1 again the velocity of the wave. Note that, withr150, solution~18! with ~17!
coincides exactly with~11! and ~10!.
26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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In the same way, as with the second order equations, we may also consideru2 arbitrary and
derive the followingr i relations:

r252r1 , r3522r1 , r553r4 ,
~19!

r6526r4 , r753r4 ,

whence the corresponding solution is

u~x,t !5K1
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

whereK andC depend again on the parameters of the equation and the arbitrary constantsu2 , A
andB1 . The zero background solution (K50) now requires

u252
3b~A224B1!

a
~20!

and we finally obtain

R7U2: u~x,t !5
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
, ~21!

where the velocity isC5114bB1 , as in all the cases above. Again here~21! also becomes
identical to the KdV soliton~15!, with the appropriate shift of the constantx0 , even though it is
the solution of a much more complicated pde.

It is important, however, to remark that ther i parameter values,~16! or ~19!, determined by
our approach, are quite different from the ones found in Ref. 1, by the reduction to unidirec
flow from a pair of pdes describing bidirectional wave propagation. The reasons for this diffe
remains an open question, which clearly requires further investigation.

III. NUMERICAL STABILITY ANALYSIS

The numerical scheme used in the current study is the same as the one employed in Re
is based on a combination of finite differences and a Fourier pseudospectral method. In o
demonstrate the application of our algorithm we first describe it on the KdV equation

ut1ux1auux1buxxx50 ~22!

with the initial conditionu(x,0)5 f (x). The time derivative in~22! is discretized using a finite
difference approximation, in terms of central differences

un115un2122Dt~ux
n1aunux

n1buxxx
n !50. ~23!

According to the pseudospectral method, we introduce the approximate solution

u~x,t !5 (
k50

N

ak~ t !Fk~x!, ~24!

whereFk(x)5eikx are the Fourier exponentials, andak(t) are coefficients to be determined, fo
k50,1,...,N.

The steps used to advance the solution from time stepn to n11 are7

~i! Given uj
n5u(xj ,tn) evaluateak

n5ak(tn) from ~24!.
~ii! Given ak

n evaluate the derivatives, e.g.,@]2u/]x2# j
n from ~24!.
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~iii! Evaluate the nonlinear terms, e.g.,uj
n@]u/]x# j

n .
~iv! Evaluateuj

n11 from ~23!, at x5xj , t5tn11 .

Step ~i! is the transformation from physical space to spectral space. This transformat
achieved by the use of a fast Fourier transform~FFT! described in Refs. 7 and 8 with a number
operations (5/2)N log2 N ~N being the number of polynomials!, in contrast to the 2N2 operations
required for a matrix-vector multiplication.9 Step~ii! occurs in spectral space and the evaluation
the nonlinear term in step~iii! is in physical space, thus avoiding the expensive multiplication
all coefficients in the expansions of the form~24!. Step~iv! occurs again in physical space.

The accuracy of our numerical scheme for the time variablet is O((Dt)2), due to central
differences and for the space variablex, where we use the pseudospectral method,O(e2qN),
whereq is a constant.8 Numerical calculations were carried out for various numbers of poly
mialsN5128, 256, 512, and 1024 and time stepsDt50.0001 to 0.002, while the spatial step w
chosen to beDx51.

We should mention here that, for the time propagation of such types of problems, whe
spatial discretization is extremely accurate, the most commonly used method is the fourth
Runke–Kutta integration scheme. Even though this method provides satisfactory results,
fail because of sensitivity to the initial conditions and inherent instabilities. Thus, since the
bility of the waves propagating in time is of more interest than the accuracy, a more stable, c
differencing is used for the discretization in time.

In Ref. 4 we carried out several calculations to verify the efficiency of our numerical code
the KdV equation~1! at t50 with a51, b50.1, x0520 andc51.1, we took as initial condition
the well-known exact solitary wave solution

u~x,t !5
3~c21!

a
sech2F1

2
Ac21

b
~x2ct2x0!G , ~25!

wherec is the propagation speed andx0 is an arbitrary constant.10,11 We observed that our wav
moves along the spatial direction retaining its initial profile for a very long time period of at
t52.53106 time units with time stepDt50.01. A three-soliton interaction was also studied a
the results were as expected from the soliton solutions of the KdV, i.e., the waves interact
cally and remain unchanged before and after their interaction. These results were obtain
various time steps and numbers of polynomialsN mentioned above, which demonstrates that
code reproduces accurately the fundamental properties of the KdV.

The plethora of free parameters entering into Eqs.~2! and ~6! makes the study of the wav
solutions, obtained in Sec. II, not a very easy task. However, if we impose the zero backgrou
our solutions, much of the redundancy is removed and ourr i ’s begin to have a more specifi
meaning. Thus, we investigate the wave solution~11! for Eq. ~2!, with u0 given by ~10! and for
r i , i 51,2,3 satisfying~9!. This solution is referred to asR3U0. For the same equation we als
study the solution~14! for u2 given by~13! andr i , i 51,2,3 satisfying~12!, which is referred to
asR3U2. Similarly we nameR7U0 the solution~18! of Eq. ~6! with u0 given by~17! and forr i ,
i 51,...,7 satisfying~16! andR7U2 the solution~21! of the same equation withu2 given by~20!
and forr i , i 51,...,7 satisfying~19!.

The free parameters now present in the solutionsR3U0 andR3U2 are onlya, b, B1 , andr2

for R3U0 or r1 for R3U2. Therefore, we will first study how they affect the stability of th
above-mentioned wave solutions, and then proceed to study theR7U0 andR7U2 waves, using
similar a andb, plusr1 for R7U0 andr4 for R7U2.

A. A stability criterion

Our ultimate goal, of course, is to examine the values of the parameters in our higher
KdV equations~2! and~6!, for which the solitary wave solutions mentioned above preserve
shape and are stable under evolution. By the term ‘‘stable’’ we mean that a wave solution,
26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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substituted in an equation, retains its initial profile for long times, albeit with some sm
oscillations present as radiation waves, due to unavoidable numerical errors produced und
evolution.

Thus, in order to check stability, one way is to track the residual of the solution in time
the case of KdV, for example, ifū is an exact solution of~1! it will satisfy

ūt1ūx1aūūx1būxxx50. ~26!

If the approximate solution~24!, computed numerically, is substituted into~26! it will not, of
course, give zero. Thus we write for it

ut1ux1auux1buxxx5R,

whereR is called the residual of the equation. It is expected thatR is a continuous function ofx
and t and if N is sufficiently large then, in principle, the coefficientsak(t) can be chosen so tha
R is as small as we wish over the computational domain. In our case we evaluateR5Ri at each
xi , i 51,...,N grid point at specific time momentstn .

Due to the fact that the wave solutions are computed for sufficiently large values ofN ~128 to
1024!, the spatial error of the pseudospectral method is in agreement with theO(e2qN) estimate
mentioned above, and is practically zero. The maximum absolute residual, which we refer to
error,E5maxiuRiu, will increase due to the central differencing in time, but cannot be greater
O((Dt)2). Several tests have been made for the wave solution~25! of the KdV verifying that for
various values ofN ~128 to 1024!and time stepDt50.0001 to 0.02,E,(Dt)2 at least for a time
period of 106 time units.

Therefore, a practical way to verify that a wave solution is stable is to check if the
remains, for long times, less thanO((Dt)2). If E increases above this value already from t
outset, oscillations will soon grow and become unbounded after relatively short times, no
because of the numerical scheme, but also due to the nonlinear nature of the equations, su
that the initial wave solution has become unstable.This is also supported by the fact that blowu
occurs nearly at the same times, irrespective of the values of theDx andDt step sizes used in th
numerical scheme.

B. Solutions R3U0 and R3U2

Let us now proceed to the study ofR3 solutions. In all that followsB1 satisfies the relations
B1.0 andA.A2B1 which are vital in order to have a bounded wave solution. The parameA
does not affect the stability of the wave and in all cases is takenA53.

One way to examine the stability of solutions under investigation is to seta, b fixed and start
to increaseB1 , the velocity of the wave, by a quantityDB1 . Each time we increaseB1 , we track
the errorE for a period of time: If it remains below (Dt)2, we consider that the wave is stable f
this period, and proceed to increaseB1 by anotherDB1 until E becomes greater than (Dt)2. Once
this happens, we setDB15DB1/2, decreaseB1 by DB1 and track the error again. In that way, w
determine, up to an accuracye (DB1,«), the maximum value ofB1 ~speed!,B1

max, for which the
solitary wave is stable.

The period of time used in the current study is 500 time units, with time stepDt50.001 and
accuracy«50.001. Several tests have been made, e.g., with the KdV, using cases where th
solution is known to be stable, and as expected, the value ofB1

max, estimated in the above way
depends neither on the time stepDt, nor on the number of pointsN we use.

Figure 1 shows the variation ofB1
max with a for various values ofb. The parameterr2 is fixed

equal to 1. It is observed that asa increasesB1
max is increasing for small values ofb. The variation

of B1
max with a is smaller asb increases and finally no significant changes are observed whb

.0.2. Thus, it can be concluded thata has a stabilizing effect on the solutions, especially for l
26 Nov 2002 to 150.140.170.208. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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values ofb, since its increase makes the range of velocities larger for stable soliton-like wav~in
the range of 0,b<0.1). The region below each curve~plotted by interpolation!is the region of
stability of the wave solution for the corresponding values of parameters.

The variation of theB1
max with b for various values ofa is shown in Fig. 2. Unlike what was

observed fora in Fig. 1, we find thatB1
max decays exponentially with the increase ofb, and the

region where the wave solution is stable is larger for greater values ofa. Thus we conclude tha
increasingb has a destabilizing effect on the solitary waves. The parameterr2 is again kept equa
to 1. The variation ofB1

max for the solutionR3U2 with a or b is qualitatively the same as that fo
R3U0, and any quantitative differences with Figs. 1 and 2 are insignificant.

Similar results were also observed for theR7U0 andR7U2 solutions. However, because o
the additionalr i parameters present in these cases, a direct comparison with theR3 solutions is
not easy to demonstrate pictorially.

It is important to note that these findings are in good agreement with the conditions o
validity of ~2! and ~6!, i.e., thatO(b),O(a).1 In fact, usingb'a2 is seen to yield optimal
results in terms of the size of stability regions of our solitary wave solutions.

FIG. 1. Variation ofB1
max of solutionR3U0 with a.

FIG. 2. Variation ofB1
max of solutionR3U0 with b.
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In order to examine the effect ofr2 on R3U0 or r1 on R3U2 we can seta51, b50.1 and
find B1

max while varying the correspondingr i . Figure 3 shows this variation ofB1
max with r2 for

R3U0 andr1 for R3U2 solitary wave solutions. It is found that for an increase of the co
spondingr i up to 0.4 there are no significant changes. When ther i increase beyond 0.4 a rapi
decrease ofB1

max takes place. This decrease stops atr1'1.2 for theR3U2 solution, while, in the
case ofR3U0 it continues untilr2 reaches the value of approximately 1.7.

It is worth mentioning that the results plotted in Figs. 1–3 usingDt50.001 andN5128, are
also obtained for time steps 0.0001, 0.002, and number of points 256 and 512.

C. Error behavior during wave propagation

Before proceeding to theR7 solutions, let us discuss some results concerning the error c
rion of Sec. III A, in order to understand how wave solutions propagate in time and which of
are considered as stable. The results described below were obtained for theR7U0 solution, but are
similar to what is observed forR7U2.

FIG. 4. Error variation with time for three different values ofB1 . The caseB150.5 lies just above the boundary of th
stability regionE<(Dt)2.

FIG. 3. Variation ofB1
max with r2 for R3U0 andr1 for R3U2.
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We seta50.5, b50.05,r151, r250.2 and track the error ofR7U0 for a period of time of
100 time units, with time stepDt50.001, and three different values ofB1 , namely 0.3, 0.5, and
0.7. The variation of the errors for these cases are shown in Fig. 4. Note that the errorB1

50.3 is less than (Dt)25131026.
Figure 5 shows theR7U0 solution propagating in time forB1 equal to 0.3, 0.5 and 1.5

respectively, for the same values of the other parameters as above. It is observed thatB1

50.3 the wave remains virtually unchanged in time and is therefore considered stable, w
radiation waves remaining smaller than (Dt)2 for very long times. On the other hand, in the ca
B150.5, bounded oscillations appear where the error slightly exceeds (Dt)2. We call this solution
unstable, because its radiation waves grow as time increases and become unbounded
relatively short time. Similarly, forB151.5, where these oscillations are even larger at the be
ning, blowup occurs after a much shorter time interval. We remark once more that anal
results are obtained for different time steps, and also for the same time step and greater
of N.

It is important to mention that for smallb(b,0.1) and largea(a'1) oscillations appear
even when the errorE does not exceed (Dt)2. These oscillations remain almost the same fo
time period comparable to the one used to test the stability of the solutions of KdV. More

FIG. 5. Evolution ofR7U0 in time for B150.3, 0.5, and 1.5, respectively.
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even whenE'(Dt)2 ~andb small enough!oscillations can persist over long time intervals as se
in Fig. 5, with b50.05, where the oscillations occurring forB151.5 remain unchanged an
bounded well beyond value oft575 shown in the figure.

However, if the error grows sharply at some point in time, this implies that the oscillation
become unbounded soon thereafter leading to a blowup of the solution. Figure 6 show
propagation ofR7U0 for a50.5, b50.4, r151 and r250.2. In this case,B1

max'0.156, as
estimated by the method described above. Consequently, if we setB150.19 error oscillations
suddenly explode att'50 causing the wave amplitude to increase while att'80 the solution
blows up. The same behavior is observed forDt varying from 0.0001 to 0.002 andN from 128 to
512 indicating that this is not a numerical blowup.

As in the case ofR7U0 shown in Fig. 6, we have also observed from numerous tests, th
the wave is to blow up, the error will suddenly increase by 2–3 orders of magnitude withi
first 200 time units. In some examples, blowup occurs after thousands of time units,
predicted by our error analysis already within the first 200 time units. Thus, for the calculati
stability results, we adopt the time period of 500 time units of numerical integration.

In order to investigate the stability of theR7 solutions we keep the values ofa andb fixed at
a51, b50.1. Moreover, we considerr150.2 andr250.2 for R7U2 andR7U0, respectively.
Consequently, the independent parameters arer1 for R7U0 andr4 for R7U2. The variation of
B1

max with r1 for R7U0 andr4 with R7U2 is shown in Fig. 7. It is found that the growth ofr1

in R7U0 results in an increase ofB1
max, whereas increasingr4 in R7U2 solution results in a

decrease ofB1
max. For relatively large values of the correspondingr i the stability regions differ

considerably and for values greater than unity the correspondingB1
max can be 4 times greater fo

R7U0 than that ofR7U2.

D. Elastic three wave interactions

In Ref. 4 a three-wave interaction was performed with Eq.~2!, using its solution~3! as initial
condition for the three solitary waves. It was reported that due to the different backgrounds

FIG. 6. Evolution ofR7U0 in time for B150.19.
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waves a slight displacement of each solution by a constant had to be applied. This can n
avoided using the zero background wave solutions we have obtained here. Thus, we study h
interactions of solitary waves of the form~15!, using the third order KdV equation~6!.

A preliminary investigation of theR7 solutions suggests using theR7U0 solitary wave, since
its stability region increases with increasingr1 , provided we keep the difference betweenr1 and
r2 small. The reason is that the additional nonlinear terms inR7U0 are multiplied byr4 ,...,r7

values which are smaller than those ofR7U2, and thus lead to a larger area of stability.
The next step is to specify values for thea andb parameters. As was shown in Sec. II, th

wave speed of propagation isC5114bB1 . Thus, the relative speed between two waves
4b(B12B18), whereC85114bB18 is the velocity of the second wave. Consequently, we hav
use relatively large values ofb to see an interaction within a reasonable time. Furthermore,
have to avoid using largea so as to reduce the bounded oscillations described in the prece
section. Therefore, taking into account all these considerations we choosea50.4, b50.1, r1

50.25, andr250.1.
For the values of the remaining parameters we setx1510, x2528, x3555 andB1150.30,

B1250.20, B1350.06, wherexi and B1i correspond, fori 51,2,3, to the first~fastest!, second
~middle!, and third~slowest!wave. The interaction of these solitary waves, as shown in Fig.
seen to occur in exactly the same way as for the KdV equation. No radiation is observed a
differences are found in the shape of the solitary waves~before and after collision!as far as we
could determine numerically~with Dt50.01 andN51024). These results strongly indicate th
existence of wave solutions which ‘‘behave’’ as true solitons in water wave equations w
represent higher order approximations to the KdV equation.

IV. CONCLUDING REMARKS

In this paper, we have studied the existence and stability of solitary wave solutions of
representing second and third order approximations of unidirectional water wave propagat
the short amplitude, 0,a5a/h!1, and long wavelength limit, 0,b5(h/ l )2!1 ~h is the depth
of the fluid layer!. To first order ina andb, these pdes reduce to the famous KdV equation, wh
is completely integrable and possesses solitary waves that interact perfectly elastically wit
other and are called solitons.

Our original motivation was the fact that these higher order KdV equations have been s
to be equivalent to completely integrable pdes, by a local nonlinear transformation, at the
order of approximation ina andb.1 The question therefore naturally arises if these higher or
KdV approximations also possess solitary waves exhibiting soliton-like dynamics.

FIG. 7. Variation of theB1
max with r1 , for R7U0 andr4 for R7U2.
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Adopting the assumptionO(a),O(b) ~e.g., b'a2), which eliminates some dispersiv
terms with higher order derivatives,1,12 we derive exact, closed form expressions for the solit
waves valid to second and third order ina andb using Pickering’s algorithm.5,6 Choosing then
specific values for the free parameters, we force these solutions to have zero backgrou
demonstrate the remarkable fact that they all have the same sech2 form and velocity dependenc
as the simple, one-soliton solution of the KdV.

Proceeding to a numerical study of their stability, we use a Fourier pseudospectral m
combined with finite difference in time~with step sizeDt) and establish a threshold of numeric
error toleranceE5(Dt)2. Thus we call a solitary wave stable if the small oscillations trailing
wave have amplitude smaller thanE and remain bounded for very long times~<500 units!.

However, as the speed of the wave increases, these ‘‘radiation’’ oscillations also increa
when their amplitude exceedsE, already at the beginning of their evolution, turn out to exhibi
dramatic growth over relatively short times~<200 units!leading eventually to blowup of the wav
and characterizing the solution as unstable. Our results are entirely consistent with what
served for the KdV equation and also agree with the assumption thatO(b),O(a) in these pdes.

A number of open questions remain for future investigation: What is the ‘‘physical’’ mea
of the values of the free parameters, which we have chosen so that the solitary waves of the
have zero background? Why are these values different from those obtained by the reduction
original water wave equations to unidirectional motion?1 In fact, we have recently observed th
the ode that gives traveling wave solutions for the second order approximation~2! can be easily
integrated once and then numerically studied by phase plane analysis to give homoclinic
which correspond to solitary waves for many otherr i parameters than the ones identified here

Can such integrations be carried out also for the third order equation~6! to yield solitary
waves, exhibiting similar behavior and reducing to the KdV soliton, asa and b go to zero?
Finally, among all these choices, whichr i fit best the physical realization of a solitary water wav

Another question concerns the mathematical form of the solitary waves we have obtai
this paper: Could their simple sech2 expressions~identical for the second and third order cas
imply that they also hold in higher order approximations? Finally, is their presence related
fact that the corresponding approximation can be transformed to a pde which is comp
integrable to the same order ina, b?

In conclusion, we believe that water wave motion still remains an open and fascinating
of great mathematical and physical interest and hope to be able to answer some of the
questions in a future publication.

FIG. 8. Elastic interaction of threeR7U0 solitary waves of Eq.~6!.
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