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temperature dependent magnetization
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Abstract. The flow of a heated ferrofluid over a linearly stretching sheet is studied in the pres-
ence of an applied magnetic field due to a magnetic dipole. It is assumed that the applied
magnetic field is sufficiently strong to saturate the ferrofluid and the variation of magnetization
with temperature can be approximated by a non linear function of temperature difference. By
introducing appropriate non dimensional variables the problem is described by a coupled and
non linear system of ordinary differential equations with its boundary conditions which is solved
numerically by applying an efficient numerical technique based on the common finite difference
method. The obtained results are presented graphically for different values of the parameters
entering into the problem under consideration and the dependence of the flow field from these
parameters is discussed. A comparative study, with a similar problem which has already been
solved and documented in literature, is also made wherever necessary, emphasizing the impor-
tance of the non-linear variation of magnetization with temperature. Emphasis is also given in
the obtained results for Prandtl number equal to 21 and critical exponent δ = 0.368 which are
important and interesting in Biomagnetic Fluid Dynamics.
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1. Introduction

A ferromagnetic fluid consists of a stable colloidal dispersion of subdomain mag-
netic particles in a liquid carrier. The properties of the ferrofluid are profoundly
affected by the thermal Brownian motion of the suspended particles and the fact
that each subdomain particle is permanently magnetized [1]. A particularly at-
tractive feature of the ferrofluids is the dependence of the magnetization upon the
temperature and this thermomagnetic coupling makes ferrofluids useful in various
practical applications. So, in recent years an extensive work has been done on the
ferrofluid dynamics in the presence of magnetic field [2]-[6].

The behavior of a ferrofluid, under the action of an applied magnetic field, is
also of fundamental importance in the development of Biomagnetic Fluid Dynam-
ics (BFD) in which the blood is investigated as a magnetic fluid. It was found that
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blood can be considered as a magnetic fluid because the red blood cells contain
the hemoglobin molecule, which is a form of iron oxides present at a uniquely high
concentration in the mature red blood cells. So, blood possesses the property of
a magnetic material, and under some circumstances, can be considered as dia-
magnetic, paramagnetic or ferromagnetic fluid [7]. In order to examine the flow
of a biomagnetic fluid under the action of an applied magnetic field, Haik et al.
[7] developed a mathematical model for the Biomagnetic Fluid Dynamics (BFD).
BFD differs from MagnetoHydroDynamics (MHD) in that it deals with no electric
current and the flow is affected by the magnetization of the fluid in the magnetic
field. In MHD, which deals with conducting fluids, the mathematical model ig-
nores the effect of polarization and magnetization. The behavior of a biomagnetic
fluid, when it is exposed to magnetic field (magnetized), is described by the mag-
netization property M. Magnetization is the measure of how much the magnetic
field is affecting the magnetic fluid and, in general, is a function of the magnetic
field intensity H and the temperature T.

The two classical problems in fluid mechanics, namely the Blasius boundary
layer flow along a flat plate and the stagnation point flow, were extended for a
saturated ferrofluid under the combined influence of thermal and magnetic field
gradients by Neuringer [8]. The flow of a viscous fluid past a linearly stretching
surface in otherwise quiescent surroundings was first considered by Crane [9] for
a Newtonian fluid and subsequently extended to fluids obeying non-Newtonian
constitutive equations like viscoelastic [10], micropolar [11] and inelastic power-
law fluids [12]. Some of these cases were later extended to include the effect of a
uniform transverse magnetic field on the motion of an electrically conducting fluid
driven by the stretching sheet [13]-[15].

Andersson and Valnes [2] extended Crane’s problem by studying the influence
of the magnetic field, due to a magnetic dipole, on a shear-driven motion (flow
over a stretching sheet) of a viscous non-conducting ferrofluid. The fluid flow was
formulated as a five-parameter problem, and the influence of the magneto-thermo-
mechanical coupling explored numerically. It was concluded that the primary
effect of the magnetic field was to decelerate the fluid motion as compared to
the hydrodynamic case. In their study, they also considered that the magneto-
thermo-mechanical coupling is completely described by assuming that the applied
magnetic field H is sufficiently strong to saturate the ferrofluid and the variation of
magnetization M with temperature T can be approximated by the linear equation
of state M = K (Tc − T ) .

However, Arrot et al. [16] suggested that below Curie temperature Tc , the
variation of spontaneous magnetization M, with temperature T, of the magnetic
particles in a liquid carrier, is given by the expression

M = M1

(
Tc − T

T1

)δ

,

where δ is the critical exponent for the spontaneous magnetization and M1 , T1

are constants dependent on the material of the magnetic particles.
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So, in the present work the flow of a heated ferrofluid over a stretching sheet, in
the presence of an applied magnetic field due to a magnetic dipole, is studied as in
[2]. It is assumed that the magneto-thermo-mechanical coupling is not described
by a linear function of temperature difference, as in [2], but by the above men-
tioned expression suggested by Arrot et al. [16]. The formulation of the problem
is obtained by an analogous manner presented in [2] and the numerical solution
is obtained by applying an efficient numerical technique based on the common
finite difference method [17]. The obtained results are presented graphically, for
different values of the parameters entering into the problem under consideration,
and the dependence of the flow field on these parameters is also discussed. A com-
parative study with the Andersson and Valnes’ problem [2] is also made wherever
necessary, emphasizing the importance of the non-linear variation of magnetization
with temperature.

2. Mathematical formulation

The steady, two–dimensional, incompressible, laminar biomagnetic fluid flow, past
a flat and impermeable elastic sheet, which is stretched with a velocity proportional
to the distance x (u=cx) , is shown schematically in Fig. 1 . The biomagnetic
fluid far away from the sheet is at rest and at temperature Tc , while the stretched
sheet is kept at fixed temperature Tw , less than Tc . The viscous and electri-
cally non-conducting fluid, is confined to the half space (y > 0) above the sheet,
whereas a magnetic dipole is located below it, at distance d .

The magnetic field of the dipole gives rise to a magnetic field of sufficient
strength to saturate the biomagnetic fluid. The equations and the boundary con-
ditions governing this flow model are the mass conservation, fluid momentum at
x and y direction and energy equation and can be written as :

∂u

∂x
+

∂v

∂y
= 0, (1)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ0M

∂H

∂x
+ µ∇2u, (2)

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ0M

∂H

∂y
+ µ∇2v, (3)

ρcp ~q ·
(

~∇T
)

+ µ0T
∂M

∂T
~q ·

(
~∇H

)
= k∇2T + µΦ, (4)

with boundary conditions :

y = 0 : u = cx, v = 0, T = Tw (5)
y →∞ : u = 0, T = Tc, p+ 1/2q2 =const. (6)
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Figure 1. Schematic representation of flow configuration

In the above equations u and v are the velocity components of the fluid in
x and y direction, respectively ( ~q = (u, v) ), p the pressure, ρ the biomagnetic
fluid density, µ the dynamic viscosity, µo the magnetic permeability, cp the
specific heat at constant pressure and k the thermal conductivity. Also ∇2 is the
two dimensional Laplacian operator (∇2 = ~∇ · ~∇ = ∂2

/
∂x2 + ∂2

/
∂y2 ) and Φ is

the dissipation function which, in our case, is given by

Φ = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
(

∂v

∂x
+

∂u

∂y

)2

. (7)

The terms µoM(∂H/∂x) and µoM(∂H/∂y) in (2) and (3), respectively, represent
the components of the magnetic force per unit volume and depend on the existence
of the magnetic gradient. When the magnetic gradient is absent these forces
vanish. The second term, on the left-hand side of the thermal energy equation (4),
accounts for heating due to adiabatic magnetization.

Following [2], we consider that the components Hx , Hy of the magnetic field
~H = (Hx,Hy) , due to a magnetic dipole, are given by

Hx (x, y) = −∂V

∂x
=

γ

2π

x2 − (y + d)2[
x2 + (y + d)2

]2 , (8)
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Hy (x, y) = −∂V

∂y
=

γ

2π

2x (y + d)[
x2 + (y + d)2

]2 , (9)

where
V (x, y) =

α

2π

x

x2 + (y + d)2
(10)

is the scalar potential of the magnetic dipole, γ = α and α is a dimensionless
distance defined as α=(cρ/µ)1/2 d . Thus the magnitude

∥∥∥ ~H
∥∥∥=H, of the magnetic

field intensity, is given by

H (x, y) =
[
H2

x + H2
y

]1/2
=

γ

2π

1
x2 + (y + d)2

(11)

and the gradients are given by

∂H

∂x
= − γ

2π

2x

(y + d)4
,

∂H

∂y
=

γ

2π

[
− 2

(y + d)3
+

4x2

(y + d)5

]
. (12)

When the applied magnetic field ~H is sufficiently strong to saturate the bio-
magnetic fluid, the magnetization M is, generally, determined by the fluid tem-
perature. Andersson and Valnes [2] considered that the variation of magnetiza-
tion M with temperature T can be approximated by the linear equation of state
M = K (Tc − T ) , where K is a constant called pyromagnetic coefficient and Tc is
the Curie temperature.

However, Arrot et al. [16] suggested that below Curie temperature Tc , the
variation of spontaneous magnetization M, with temperature T, of the magnetic
particles in a liquid carrier, is given by the expression

M = M1

(
Tc − T

T1

)δ

, (13)

where δ is the critical exponent for the spontaneous magnetization and M1 ,
T1 are constants dependent on the material of the magnetic particles. For iron
δ=0.368 , M1 =54 Oe , T1 =1.45 oK and Tc =770 oK .
It is worth mentioning here that equation (13), used in this work, is more general
than that used in [2] and becomes identical to it when δ=1 and M1/T1 = K .

3. Transformation of equations

We introduce now the nondimensional coordinates [2]

ξ(x) =
(

c
ρ

µ

)1/2

x , η(y) =
(

c
ρ

µ

)1/2

y (14)
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and the dimensionless variables

Ψ(ξ, η) =
(

µ

ρ

)
ξf(η) , (15)

P (ξ, η) =
p

cµ
= −P1 (η)− ξ2P2 (η) , (16)

Θ (ξ, η) =
Tc − T

Tc − Tw
= Θ1 (η) + ξ2Θ2 (η) . (17)

In the above expressions Ψ(ξ, η) , Θ(ξ, η) and P (ξ, η) are the dimensionless
stream function, temperature and pressure, respectively. The velocity components
can be calculated now as

u =
∂Ψ
∂y

= cxf ′ (η) v = −∂Ψ
∂x

= −
(

cµ

ρ

)1/2

f (η) (18)

where ( )′ = ∂ ( )/∂η .
Substituting equations (12)∼ (18) into the momentum equations (2) and (3)

and the energy equation (4) and equating coefficients of equal powers of ξ , up to
ξ2 , we get the following system of ordinary differential equations

f ′′′+ ff ′′ − (f ′)2 + 2P2 − 2BΘδ
1

(η + α)4
= 0 , (19)

P ′1 −f ′′ − ff ′ − 2BΘδ
1

(η + α)3
= 0 , (20)

P ′2 −
2BΘ2

(η + α)3
δΘδ−1

1 +
4BΘδ

1

(η + α)5
= 0 , (21)

Θ′′1 +Pr f Θ′1 +
2λB (Θ1 − ε) f

(η + α)3
δ Θδ−1

1 + 2Θ2 − 4λ (f ′)2 = 0 , (22)

Θ′′2 −Pr (2f ′ Θ2 − f Θ′2) +
2λB f Θ2

(η + α)3
δ Θδ−2

1 [(1− δ) ε + δΘ1]

−λB (Θ1 − ε)

[
2f ′

(η + α)4
+

4f

(η + α)5

]
δΘδ−1

1 − λ (f ′′)2 = 0. (23)

Also, the boundary conditions (5) and (6) become now

η = 0 : f = 0, f ′ = 1, Θ1 = 1, Θ2 = 0, (24)
η →∞ : f ′ → 0, Θ1 → 0, Θ2 → 0, P1 → −P∞, P2 → 0. (25)
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The five dimensionless parameters appearing in the transformed equations are

Pr = µcp/k (Prandtl number),

λ =
cµ2

ρk (Tc − Tw)
(viscous dissipation parameter),

ε = Tc/ (Tc − Tw) (dimensionless Curie temperature),

B =
γ

2π

µoM1 (Tc − Tw)δ
ρ

µ2T δ
1

(ferromagnetic interaction ,
parameter),

α = (cρ/µ)1/2
d (dimensionless distance α)




(26)

It is worth reminding, once more, that for δ=1 and M1/T1 =K (pyromagnetic
parameter) the system of equations (19)–(26) becomes identical to that presented
in [2].

The system of equations (19)–(23), subjected to the boundary conditions (24)-
(25), is a five–parameter coupled and non–linear system, describing the biomag-
netic fluid flow over the stretching sheet when the magnetization of the fluid is
given by a non–linear temperature dependent relation.

4. Numerical method and results

One of the most commonly used algorithms for the solution of such two–point
boundary value problems is the Runge–Kutta integration scheme along with the
Newton–Raphson shooting method and such a technique was used by Andersson
and Valnes in their study [2]. Even though this method provides satisfactory re-
sults for such types of problems, it may fail when applied to problems in which
the differential equations are very sensitive to the choice of the missing initial
conditions. Moreover, another serious difficulty which may be encountered in
boundary–value problems is the inherent instability. Difficulty also arises in the
case in which one end of the range of integration is at infinity. The end-point
of integration is usually approximated by assigning a finite value to this point; it
is obtained by estimating a value at which the solution will reach its asymptotic
state. The computing time for integrating the differential equations can some-
times depend critically on quality of the initial guesses of the unknown boundary
conditions and the infinite end-point.

On the contrary to the above–mentioned numerical method, the numerical
technique we used in the present work has better stability characteristics, is simple,
accurate and efficient. The essential features of this technique are the following:
(i) It is based on the common finite difference method with central differencing,
(ii) on a tridiagonal matrix manipulation, and (iii) on an iterative procedure. This
technique is described in detail in [17].

So, numerical calculations were carried out for different values of the dimension-
less parameters (26), entering into the problem under consideration and especially
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Figure 2. Variation of the dimensionless velocity component f ′(η)

for different values of the Prandtl number Pr and critical exponent δ . It was
stated in the introduction that blood, under some circumstances, can be considered
as ferromagnetic fluid. Although the viscosity µ , the specific heat under constant
pressure cp and the thermal conductivity k of any fluid, and hence of the blood,
are temperature dependent, Prandtl number Pr =µcp/k can be considered con-
stant. Thus, for human body temperature T =310 oK , the value of µ , cp and k
is equal to 3.2×103kgr/m·sec , 14.65 Joule/kgr·oK and 2.2×10−3Joule/m·sec·oK ,
respectively, [18], [19] and hence Pr = 21 .

In order to compare our results with those obtained in [2], numerical calcula-
tions were also carried out for Prandtl number Pr=1, 7, and for critical exponent
δ = 1 . For this value of δ , our ferromagnetic interaction parameter B becomes
identical to ferrohydrodynamic interaction parameter β in [2]. Hence, the values
of B were taken from 0 to 5 as in [2]. The value B = 0 corresponds to hydro-
dynamic flow and in such a case the flow field is also independent on the critical
exponent δ . Finally, the values of the viscous dissipation parameter λ , dimen-
sionless Curie temperature ε and dimensionless distance α were taken equal to
0.01 , 2 and 1 , respectively.

The variations of the dimensionless velocity component f ′(η) (= u/cx) are
presented in Fig. 2 for Pr=7 , for two different values of the critical exponent δ=
1.0 , 0.368 and for two different values of the ferromagnetic interaction parameter
B . It is observed that as the ferromagnetic interaction parameter B is increased
the fluid velocity is decreased and this reduction is greater for smaller values of
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Figure 3. Variation of the dimensionless temperature Θ1(η) .

Figure 4. Variation of the dimensionless pressure P2(η) .
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Figure 5. Variation of the dimensionless pressure P2(η) .

the critical exponent δ . This influence of the above mentioned parameters on
the velocity field, is limited for small values of the dimensionless distance η from
the stretched sheet. The results for δ = 1 and B =0 or 5 are identical to those
obtained in [2].

Fig. 3 shows some characteristic profiles for the dimensionless temperature
Θ1(η) for Pr =7 and Pr =21 and for the same values of the parameters B and δ
as in Fig. 2. It is observed from this figure that as Pr increases Θ1(η) decreases.
When Pr =7 and B =5 the temperature Θ1 increases as the critical exponent
δ decreases. However, this increment of Θ1(η) is negligible for higher values of
Pr . Finally, for every value of Pr and δ the fluid temperature increases as the
ferromagnetic interaction parameter B increases. This increment is greater for
small values of Pr and/or δ . The temperature profiles Θ1(η) for δ=1 , Pr=1 ,
and B=0 or 5, correspond to those obtained in [2].

Figs. 4 and 5 show the variations of the dimensionless pressure P2(η) for
different values of Pr , δ , and B . For Pr=7 , δ=1.0 and B=0 , 1 and 5 (Fig.
4) the obtained results are identical to those obtained in [2]. It is observed from
Fig. 4 that for every value of the ferromagnetic interaction parameter B 6=0 the
dimensionless pressure P2 increases as the critical exponent δ decreases and this
increment is greater for higher values of B.

It was reported that a ferromagnetic fluid consists of a stable colloidal disper-
sion of subdomain magnetic particles in a liquid carrier. Hence, every value of the
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Figure 6. Variation of the wall shear parameter −f ′′(0) .

critical exponent δ corresponds to a specific material of the magnetic particles.
So, Fig. 5 shows the variations of P2(η) for three different Prandtl numbers,
for different values of δ and for B = 5 . It is observed that for every δ , P2(η)
decreases as Pr increases. Similarly, for a specific liquid carrier ( Pr = const. ),
P2(η) decreases as δ increases.

The most important flow and heat transfer characteristics are the local skin
friction coefficient and the local rate of heat transfer coefficient. These quantities
can be defined by the following relations:

Cfx
= − 2τw

ρ(cx)2
and Nux =

x

Tc − Tw

∂T

∂y

∣∣∣∣
y=0

, (27)

where τw = µ ∂u
∂y

∣∣∣
y=0

is the wall shear stress, Nux is the local Nusselt number

and Rex is the local Reynolds number defined as Rex =ρcx2/µ . Using eqs. (14),
(17) and (18) the above mentioned quantities can be written as

Cfx
=−2f ′′(0)Re−1/2

x and Nux = − [
Θ′1(0) + ξ2Θ′2(0)

]
Re1/2

x , (28)

where f ′′(0) is the dimensionless wall shear parameter and Θ′(0) (= Θ′1(0)+
ξ2Θ′2(0)

)
is the dimensionless wall heat transfer parameter. It is apparent that

the flow field is affected by the ferromagnetic interaction parameter B . In hydro-
dynamic case ( B = 0 ) P2 becomes a constant equal to its value zero at infinity
(eqs.(21) and (25)) and on the other hand, the flow problem is decoupled from the
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Figure 7. Variation of the wall pressure parameter P2(0) .

thermal energy problem. So, it is more interesting and convenient to replace the
dimensionless wall heat transfer parameter −Θ′(0) = − [

Θ′1(0)+ξ2Θ′2(0)
]

by the

dimensionless and independent of the distance ξ ratio Θ∗(0) = Θ′1(0)
Θ′1(0)|B=0

called

coefficient of the heat transfer rate at the wall (sheet). Also, the quantity P2(0)
can be defined as the wall pressure parameter.

The variations of these three parameters (coefficients), namely −f ′′(0) , P2(0)
and Θ∗(0) , with the ferromagnetic interaction parameter B , are shown in Figs.
6, 7 and 8, respectively, for Pr = 1, 7, 21 and for δ = 1, 0.7 and 0.368. It is
observed that the wall shear parameter −f ′′(0) , the wall pressure parameter P2(0)
and the heat transfer rate at the wall Θ∗(0) are varied almost linearly with the
ferromagnetic interaction parameter B and −f ′′(0) as well as P2(0) increases
as B increases whereas Θ∗(0) decreases as B increases. For every specific value
of B and δ , the wall shear parameter −f ′′(0) increases as Prandtl number Pr
increases. It is worth mentioning here that for Pr = 1 or 7, −f ′′(0) increases as
the critical exponent δ increases whereas for Pr = 21 (blood), −f ′′(0) decreases
as δ increases and this result may be of fundamental importance in the field of
Biomagnetic Fluid Dynamics (BFD).

From Fig. 7 it is observed that for every value of the Prandtl number Pr = 1, 7
or 21 and for every value of the critical exponent δ , P2(0) increases linearly with
the ferromagnetic interaction parameter B . However, for every specific value of
B 6=0 , P2(0) decreases as δ increases or as Pr increases and this decrement is
greater for higher values of Pr . Finally, Fig. 8 shows the variations of the coeffi-
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Figure 8. Variation of the wall heat transfer parameter Θ∗(0) .

cient of the heat transfer rate at the wall Θ∗(0) with B . It is worth emphasizing
here that for Pr = 7 or 21 , Θ∗(0) increases as the critical exponent δ increases
and the opposite is true for Pr = 1 . It should be also noticed that the results
obtained for Pr = 1 , 7 and δ = 1 and presented graphically in Figs. 6–8 are
identical to those obtained in [2].

5. Concluding remarks

The most important characteristics of the flow field for such type of problems
are the dimensionless wall shear parameter −f ′′(0) , the wall pressure parameter
P2(0) and the coefficient of the heat transfer rate at the wall (sheet) Θ∗(0) .

So, we summarize the important results for these quantities as follows:
The variation of the parameters −f ′′(0) , P2(0) and Θ∗(0) with the ferromagnetic
interaction parameter B is almost linear and −f ′′(0) as well as P2(0) increases
as B increases whereas Θ∗(0) decreases as B increases.

The parameters −f ′′(0) and Θ∗(0) increase as the Prandtl number Pr in-
creases whereas P2(0) decreases.

For small values of Pr , such as 1 or 7, the wall shear parameter −f ′′(0)
increases as the critical exponent δ increases. However, for higher values of Pr ,
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−f ′′(0) decreases as δ increases. This decrement of −f ′′(0) , at high Prandtl
numbers, can be counterbalanced by the increment, occurred in −f ′′(0) , due to
the increase of Prandtl number.

The parameter P2(0) increases linearly with the ferromagnetic interaction pa-
rameter B and decreases as δ increases or as Pr increases. This decrement is
greater for higher values of Pr .

For Pr=7 or 21, Θ∗(0) increases as the critical exponent δ increases whereas
the opposite is true for Pr =1.

The results obtained for Pr = 1 , 7 and δ = 1 are identical to those obtained
in [2].
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