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A mathematical model for blood flow in magnetic field
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In the present study a mathematical model of biomagnetic fluid dynamics �BFD�, suitable for the
description of the Newtonian blood flow under the action of an applied magnetic field, is proposed.
This model is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics and
takes into account both magnetization and electrical conductivity of blood. As a representative
application the laminar, incompressible, three-dimensional, fully developed viscous flow of a
Newtonian biomagnetic fluid �blood� in a straight rectangular duct is numerically studied under the
action of a uniform or a spatially varying magnetic field. The numerical results are obtained using
a finite differences numerical technique based on a pressure-linked pseudotransient method on a
collocated grid. The flow is appreciably influenced by the application of the magnetic field and in
particularly by the strength and the magnetic field gradient. A comparison of the derived results is
also made with those obtained using the existing BFD model indicating the necessity of taking into
account the electrical conductivity of blood. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1978807�
I. INTRODUCTION

Biomagnetic fluid dynamics �BFD� is a relatively new
area in fluid mechanics investigating the fluid dynamics of
biological fluids in the presence of magnetic field. During the
last decades extensive research work has been done on the
fluid dynamics of biological fluids in the presence of a mag-
netic field. Numerous applications have been proposed in
bioengineering and medical sciences. Among them is the de-
velopment of magnetic devices for cell separation, targeted
transport of drugs using magnetic particles as drug carriers,
magnetic wound or cancer tumor treatment causing magnetic
hyperthermia, reduction of bleeding during surgeries or
provocation of occlusion of the feeding vessels of cancer
tumors and development of magnetic tracers.1–8

A biomagnetic fluid is a fluid that exists in a living crea-
ture and its flow is influenced by the presence of a magnetic
field. The most characteristic biomagnetic fluid is blood,
which behaves as a magnetic fluid, due to the complex inter-
action of the intercellular protein, cell membrane and the
hemoglobin, a form of iron oxides, which is present at a
uniquely high concentration in the mature red blood cells,
while its magnetic property is affected by factors such as the
state of oxygenation.9 It is found that the erythrocytes orient
with their disk plane parallel to the magnetic field9–13 and
also that blood possesses the property of diamagnetic mate-
rial when oxygenated and paramagnetic when
deoxygenated.14 Measurements have also been performed for
the estimation of the magnetic susceptibility of blood which
was found to be 3.5�10−6 and −6.6�10−7 for the venous
and arterial blood, respectively.15,16 Experiments have been
made using a relatively weak magnetic field �1.8 Tesla� and
low temperatures �75–295 K�.17 Strong magnetic fields �8
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Tesla� were also used on a living rat and the consequence
was the reduction of the blood flow and the temperature of
the rat.18 Also experiments have shown that for a magnetic
field of the same strength �8 Tesla�, the flow rate of human
blood in a tube was reduced by 30%.19

In order to investigate the flow of a biomagnetic fluid,
the BFD model has been developed by Haik et al. The math-
ematical formulation of BFD is analogous to the one of fer-
rohydrodynamics �FHD�, which deals with no induced elec-
tric current, and considers that the flow is affected by the
magnetization of the fluid in the magnetic field. Thus, the
resulting equations of BFD take into account the magnetiza-
tion of the fluid, as opposed to the formulation of the well-
known magnetohydrodynamics �MHD�, which deals with
conducting fluids, and the corresponding mathematical
model ignores the effect of polarization and magnetization.
The arising force due to magnetization depends on the exis-
tence of a spatially varying magnetic field and in a uniform
magnetic field this force vanishes.1,15,19–21

Thus, according to the existing BFD model of Haik
et al., biofluids are considered electrically poor conductors
and the flow laminar, Newtonian and affected only by the
magnetization of the fluid in a spatially varying magnetic
field. However, blood, in particular, exhibits considerably
high static electrical conductivity which is hematocrit and
temperature dependent. Over the above, the electrical con-
ductivity of blood varies as the flow rate varies.22–24

In the present study the existing mathematical model of
BFD,1,15,19–21 is extended. According to the presented model,
both magnetization of BFD, which is consistent with the
principles of FHD,25–31 and the Lorenz force, due to the in-
duced electric current of MHD,33–35 are taken into account.
Various equations describing the magnetization according to
FHD are also given.

As a representative application the laminar, incompress-

ible, three-dimensional, fully developed viscous flow of a
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Newtonian biomagnetic fluid �blood� in a straight rectangular
duct is numerically studied. Two cases of the applied mag-
netic field are taken into account, uniform and spatially vary-
ing. For the spatially varying magnetic field calculations with
different magnetic field gradients are also performed. The
system of the partial differential equations, resulting after the
introduction of appropriate nondimensional variables, is
solved applying an efficient finite differences numerical tech-
nique based on a pressure-linked pseudotransient method on
a collocated grid.

The same physical problem using the above-mentioned
numerical method and for a specific magnetic field gradient
has been studied by adopting the existing model of BFD of
Haik et al. in Ref. 36. The biomagnetic fluid flow in a curved
duct adopting the same model of Haik et al. and by the use
of the SIMPLE method has also been studied in Ref. 37.

The obtained results, for different values of the param-
eters entering into the problem under consideration, show
that the flow is considerably influenced by the presence of
the magnetic field. In the presence of spatially varying, as
well as uniform magnetic field, the axial velocity component
considerably reduces. Especially in the case of spatially
varying magnetic field secondary flow arises. It is also ob-
tained that the dominant factor for the formation of the flow
field is the form of the magnetic field gradient. A comparison
of the obtained results is also made with the existing model
of BFD and it is apparent that the inclusion of the Lorentz
force of MHD is a necessity for constant and relatively
smooth magnetic field gradients. These results, of the effect
of an applied magnetic field on the flow of a biomagnetic
fluid, encourage further studies for possible useful medical
and engineering applications.

II. MATHEMATICAL MODEL

The laminar incompressible flow of a homogeneous
Newtonian and electrically conducting biofluid is considered.
As the blood flows under the influence of a magnetic field,
two major forces will act upon it. The first one is the mag-
netization force due to the tendency of the erythrocytes to
orient with the magnetic field and the second one is the Lor-
entz force which arises due to the electric current generating
from the moving ions in the plasma.

According to the existing mathematical formulation of
BFD,1,15,19–21 which is consistent with the principles of
FHD,25–31 the biofluid is subject to equilibrium magnetiza-
tion and the apparent viscosity due to the application of the
magnetic field is considered negligible. The validation of the
assumption of equilibrium magnetization has been proven in
Ref. 15. Consequently, the existing model of BFD as well as
the model presented in this paper, are both valid for the flow
like the one in large blood vessels, where the blood can be
considered as a homogeneous and Newtonian fluid.32 The
contribution of the Lorentz force can be incorporated in the
mathematical model adopting the principles of MHD.33–35

According to the above mentioned considerations the
governing equations of flow for an incompressible, homoge-

neous, Newtonian biofluid are
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Continuity equation:

� · V = 0; �1�

Momentum equations:

�
DV

Dt
= − � p + �F + ��2V + J � B + �0M � H; �2�

Magnetic field equations:

� � H = J = ��V � B� ,

�3�
� · B = � · �H + M� = 0;

Energy equation.
In the nonisothermal case, it is also necessary to consider

in the mathematical model, the energy equation containing
the temperature T of the fluid. This equation can be written
as

�Cp
DT

Dt
+ �0T

�M

�T

DH

Dt
−

J · J

�
= k�2T + �� . �4�

In the above equations V= �u ,v ,w� is the velocity field,
D /Dt=� /�t+V� is the Stokes tensor, �= �� /�x ,� /�y ,� /�z�
with x ,y ,z the axis of a three-dimensional system, � is the
fluid density, p is the pressure, F is the body force per unit
volume, � is the dynamical viscosity, �0 is the magnetic
permeability of vacuum, M is the magnetization, H is the
magnetic field intensity, B is the magnetic induction, � is the
electrical conductivity of the fluid, J is the density of the
electric current, T is the temperature, k is the coefficient of
thermal conductivity of the fluid, Cp is the specific heat at
constant pressure and � is the dissipation function which for
the three-dimensional case has the form

� = 2�� �u

�x
�2

+ � �v
�y
�2

+ � �w

�z
�2� + � �v

�x
+

�u

�y
�2

+ � �w

�y
+

�v
�z
�2

+ � �u

�z
+

�w

�x
�2

−
2

3
� �u

�x
+

�v
�y

+
�w

�z
�2

.

The magnetic force due to magnetization per unit volume is
generally �0�M · � �H.25–31 Under the assumption of equilib-
rium magnetization �M and H parallel� and keeping in mind
that the used magnetic field is solenoid ��B=0� , J= � �H
is the induced current and B=�0H, it is valid, as mentioned
in Ref. 30, that

�0�M · � �H = �0
M

H
�H · � �H

= �0
M

H
�1

2
� �H · H� − H � �� � H��

= �0
M

H

1

2
� H2 − �0

M

H
�H � J�

= �0M � H −
M

H
�B � J�

= �0M � H +
M

�J � B� .

H
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Thus, the magnetization force along with the Lorenz force
�superposition� is

�0M � H +
M

H
�J � B� + J � B = �0M � H

+ �1 +
M

H
��J � B� .

It also holds, as mentioned, for example, in Ref. 30, that H
�M thus M /H�1 and the force due to the imposed mag-
netic field is finally �0M �H+ �J�B�.

Thus, the term �0M �H of Eq. �2�, represents the com-
ponent of the magnetic force, per unit volume and depends
on the existence of the magnetic gradient, whereas the term
J�B appearing in �2�, represents the Lorentz force per unit
volume and arises due to the electrical conductivity. These
two terms are generally of the same order of magnitude and
in MHD the first one is discarded, whereas the second one is
discarded in FHD.25–35

The term �0T��M /�T��DH /Dt� of Eq. �4�, represents
the thermal power per unit volume due to the magneto-
caloric effect. This term arises due to the FHD,25–31 whereas
the term J ·J /� represents the Joule heating and arises due to
the MHD.33–35

The initial model of BFD of Haik et al.19–21 was devel-
oped only for isothermal cases. In their manuscripts they
referred that they expected temperature changes of about 2 or
3 °C which they considered negligible. However, this varia-
tion of temperature is in reality of great importance for a
biological system. The physiological temperature of blood,
for example, is about 37 °C. When the temperature of blood
rises above 41 °C, irreversible damage occurs in the proteins
of plasma and that is the reason that one cannot survive after
such high fever.38

Moreover, hyperthermia or hypothermia is extensively
used for various purposes like cancer tumor treatment, or
open heart surgeries.39,40 Especially for the tumor treatment,
the role of the temperature is considerably significant. For
increments of 1 °C the time of treatment reduces to the half
for a specific biological result like the reduction to one-third
of cancer cells of a tumor.39–41

Furthermore, hyperthermia caused by the application of
magnetic field on injected magnetic fluid has been used for
the treatment of eye injuries. By using this method the treat-
ment of a group of patients was possible without using anti-
inflammatory medication.28 Use of hyperthermia, resulting
by the application of a magnetic field, has also been reported
for the treatment of acid burn necrotic skin wounds of ani-
mals. When a magnetic field was applied the temperature
raised more than 3 °C and the wounds of 12 and 20 cm2

closed after 21–26 days, whereas similar wounds, that were
not treated magnetically, showed ulcers and scabs, even after
50 days.42

Thus, the temperature changes that might occur are im-
portant especially for a biofluid like blood and the inclusion
of the energy equation is necessary at least at an initial math-
ematical model of BFD. On the other hand, the adoption of a
nonisothermal case leads to the use of the magnetization

equation that depends on both temperature and magnetic
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field strength intensity �see the following section�, and the
governing equations �1�–�4� are fully coupled. This fact in
combination with the computational difficulty investigating
such small temperature variations in the flow field may lead
to a significantly complicated problem. Thus, depending on
the difficulty of a specific physical problem one may initially
omit the energy equation, as is also made in the application
presented in Sec. III. Although, this is a simplification, it
provides a good initial approximation in order to investigate
the major effect of the magnetic field in the flow pattern.

A. Magnetization equations

The behavior of a biomagnetic fluid when it is exposed
to magnetic field �magnetized� is described by the magneti-
zation property M. Magnetization is the measure of how
much the magnetic field affects the magnetic fluid.

In an equilibrium situation the magnetization property is
generally determined by the fluid temperature, density and
magnetic field intensity. Various equations, describing the
dependence of M on these quantities, are given in Refs. 25,
27, 28, 30, 36, 37, and 43–48. The simplest is the linear
equation for isothermal cases:19,27,30,36,37

M = �H , �5�

where � is a constant called magnetic susceptibility. The fol-
lowing relation is the linear equation of state, given in Ref.
46:

M = K�Tc − T� , �6�

where K is a constant called pyromagnetic coefficient and Tc

is the Curie temperature. Above the Curie temperature the
biofluid is not subject to magnetization.

Another equation for magnetization, below the Curie
temperature Tc is given in Refs. 44 and 47:

M = M1�Tc − T

T1
�	

, �7�

where 	 is the critical exponent for the spontaneous or satu-
ration magnetization. For iron, 	=0.368, M1=54 Oe and
T1=1.45 K. An equation involving the magnetic intensity H
and the temperature T is given in Refs. 45 and 48:

M = K�H�Tc − T� . �8�

where K� is a constant.
Finally, Higashi et al.9 found that the magnetization pro-

cess of red blood cells behaves like the following function,
known as the Langevin function, which also describes the
variation of magnetization for a magnetic fluid:20,25,27,30

M = mN�coth��0mH


T
� −


T

�0mH
� , �9�

where m is the particle magnetization, N is the number of
particles per unit volume and 
 the Boltzmann’s constant.

The most accurate of the above expressions is �9�. How-
ever, Eqs. �7� and �8�, which have been calculated experi-
mentally in Refs. 47 and 48, respectively, are very good ap-
proximations. Moreover, Eq. �5� constitutes a good

15
approximation as experiments show, because especially for
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blood, the variations of the temperature in the flow field are
not so significant to influence its magnetization. The choice
of one of the above-mentioned expressions can be made de-
pending on the physical problem under consideration.

III. APPLICATION

As a simple but representative application the fully de-
veloped, laminar, incompressible, three-dimensional, viscous
flow, of an electrically conducting biomagnetic fluid �blood�,
in an impermeable rectangular duct of square cross section of

side h̄ is considered. Two cases �I and II� concerning the
application of the magnetic field are taken into account. In
case I a spatially varying magnetic field is generated by an
electric current going through a thin wire placed parallel to
the axis of symmetry of the bottom plane of the duct, at
distance c below it, as shown in Fig. 1�a�. The flow is studied
at a representative cross section ABCD with the origin of the
coordinate system placed at the point A. Consequently, the
points A, B, C, and D are A�0,0�, B�h ,0�, C�h ,h� and D�0,h�
respectively. The wire is placed at the point �h̄ /2 ,−c� and

thus, the axis of symmetry is x̄= h̄ /2. The contours of the
intensity of the magnetic field H are shown in Fig. 1�b�.

In case II a constant magnetic field is applied from be-
low the duct �x-z plane� all over the area where the duct is
situated and perpendicularly to the flow �parallel to z-y
plane�, as shown in Fig. 2�a�. The flow is studied in the same
with case I representative cross section ABCD with the ori-
gin of the coordinate system placed at the point A. The cross
Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
section ABCD, where the flow is studied, the way the mag-
netic field is applied as well as the vectors of the magnetic
field induction B, are shown in Fig. 2�b�. For both cases the
temperature changes, for simplification, are considered insig-
nificant and the magnetic field is assumed to be sufficiently
strong to saturate the biofluid �equilibrium magnetization�,
the walls of the duct are assumed electrically conducting.

A. Case I

For the case I, according to the above-mentioned math-
ematical model, and adopting the simplifications of the hy-
drodynamic fully developed flow as in Refs. 36, 37, and 50,
the dimensional �bar above the quantities� governing equa-
tions of the fluid flow, are

� ū

� x̄
+

� v̄

� ȳ
= 0, continuity, �10�

� ū

� t̄
+ ū

� ū

� x̄
+ v̄

� ū

� ȳ
= −

1

�̄

� P̄

� x̄
+ �̄	 �2ū

� x̄2 +
�2ū

� ȳ2

+

�̄0M̄

�̄

�H̄

� x̄
, x̄-momentum, �11�

� v̄

� t̄
+ ū

� v̄

� x̄
+ v̄

� v̄

� ȳ
= −

1

�̄

� P̄

� ȳ
+ �̄	 �2v̄

� x̄2 +
�2v̄

� ȳ2

+

�̄0M̄

�̄

�H̄

� ȳ
, ȳ-momentum, �12�

FIG. 1. The flow configuration of case I. The contours
of the spatially varying magnetic field of strength H are
shown in the ABCD plane of the cross section.

FIG. 2. The flow configuration of case II. The contours
of the constant magnetic field of strength H are shown
in the ABCD plane of the cross section.
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�w̄

� t̄
+ ū

�w̄

� x̄
+ v̄

�w̄

� ȳ
= −

1

�̄

� P̄

� z̄
+ �̄	 �2w̄

� x̄2 +
�2w̄

� ȳ2

−

�̄0B̄2

�̄
w̄, z̄-momentum. �13�

The boundary conditions are

ȳ = 0 or ȳ = h̄ and 0 � x̄ � h̄: ū = v̄ = w̄ = 0,

x̄ = 0 or x̄ = h̄ and 0 � ȳ � h̄: ū = v̄ = w̄ = 0, �14�

where B̄= �̄0H̄ is the magnetic field induction and �̄= �̄ / �̄ is
the kinematic viscosity. The variation of the magnetic field is

at the x̄-ȳ plane so the terms, arising due to FHD, ��̄0M̄ / �̄�
���H̄ /�x̄� and ��̄0M̄ / �̄���H̄ /�ȳ� represent the magnetization
force per unit mass in the x̄ and ȳ directions,
respectively.25–31 In both cases the variation of the magnetic
field toward the z̄ direction is zero. Thus, the magnetization
force is zero at the z̄ momentum equation whereas the term

��̄B̄2 / �̄�w̄ arises in the direction of the flow and perpendicu-
larly to the direction of the application of the magnetic field,
due to MHD.33–35 The components of the magnetic field in-

tensity H̄x and H̄y along the x̄ and ȳ coordinates �H
= �H̄x , H̄y�� are given, respectively, by

H̄x =



2�

x̄ − a

�x̄ − a�2 + �ȳ − b�2

H̄y = −



2�

ȳ − b

�x̄ − a�2 + �ȳ − b�2 ,

where �a ,b� is the point where the magnetic field is applied
and 
 is the magnetic field strength at this point �x̄=a , ȳ

=b�. For the problem under consideration a= h̄ /2 and
b=−c �see Fig. 1�.

The magnitude H̄, of the magnetic field intensity, is
given by

H̄�x̄, ȳ� = �H̄x
2 + H̄y

2�1/2 =



2�

1

��x̄ − a�2 + �ȳ − b�2
. �15�

For the variation of magnetization, Eq. �5� for isothermal
cases is used:

M̄ = �̄H̄ , �16�

where �̄ is the magnetic susceptibility of the biofluid.

B. Case II

For the case II where the magnetic field is uniform, the
force due to magnetization does not exist and as a conse-
quence the blood is affected only due to its electrical con-
ductivity. The problem in this case is a trivial problem of
MHD and the Lorentz force will arise only at the axial di-
rection in the perpendicular plane of the application of the
magnetic field. Thus, the system of the governing equations

for this case is
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� ū

� x̄
+

� v̄

� ȳ
= 0, continuity, �17�

� ū

� t̄
+ ū

� ū

� x̄
+ v̄

� ū

� ȳ
= −

1

�̄

� P̄

� x̄
+ �̄	 �2ū

� x̄2 +
�2ū

� ȳ2
,

x̄-momentum, �18�

� v̄

� t̄
+ ū

� v̄

� x̄
+ v̄

� v̄

� ȳ
= −

1

�̄

� P̄

� ȳ
+ �̄	 �2v̄

� x̄2 +
�2v̄

� ȳ2
,

ȳ-momentum, �19�

�w̄

� t̄
+ ū

�w̄

� x̄
+ v̄

�w̄

� ȳ
= −

1

�̄

� P̄

� z̄
+ �̄	 �2w̄

� x̄2 +
�2w̄

� ȳ2

−

�̄B̄2

�̄
w̄, z̄-momentum, �20�

The boundary conditions remain the same, namely �14�, as
well as the magnetic field intensity and the variation of mag-
netization which are given by the relations �15� and �16�,
respectively.

As far as it could be investigated in the references pre-
sented in this paper, the blood in some studies has been
treated as an electrically conducting fluid.49 Thus these stud-
ies depended on the principles of MHD and the analogous
system of governing equations was that of case II. From this
point of view, the polarization �magnetization� of blood in
spatially varying magnetic fields had been regarded. The
force due to magnetization is generally significant depending
also on the magnetic field gradient, as it will be noted below.

According also to the existing model of BFD by Haik et
al. the blood is treated as an electrically nonconducting
fluid.15,20 Thus, according to this formulation the analogous
system of governing equations is that of case I without the
corresponding terms to MHD discarding in that way the elec-
trical conductivity of blood. Using the existing BFD model
of Haik et al., a uniform magnetic field will have no effect on
the flow because the arising force due to magnetization de-
pends on the existence of the magnetic field gradient. Using
the model presented in this paper it is possible to study the
effect of uniform as well as the effect of spatially varying
magnetic field, taking into account all the magnetic proper-
ties of blood.

IV. TRANSFORMATION OF EQUATIONS

The following nondimensional variables are introduced:

� =
x̄

h̄
, � =

ȳ

h̄
, z =

z̄

h̄
, u =

ūh̄

�̄
, v =

v̄h̄

�̄
, w =

w̄h̄

�̄
,

p =
p̄

�̄�̄2/h̄2
, H =

H̄

H̄0

, t =
t̄�̄

�̄h̄2
, �21�

where H0= H̄�ā ,0�. Also the pressure is split as in Refs. 36,

37, and 50:
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P��,�,z� = P1�z� + p��,�� �22�

for

�P

�z
=

�P1

�z
= Pz = const,

�P

��
=

�P

��
= P�, and

�P

��
=

�p

��
= P�. �23�

A. Case I

By substitution of the relations �15�, �16�, and �21�–�23�
to the governing equations �10�–�13�, the following nonlin-
ear system of partial differential equations is obtained:

�u

��
+

�v
��

= 0, �24�

�u

�t
+ u

�u

��
+ v

�u

��
= − P� +

�2u

��2 +
�2u

��2 + MnFH
�H

��
, �25�

�v
�t

+ u
�v
��

+ v
�v
��

= − Py +
�2v
��2 +

�2v
��2 + MnFH

�H

��
, �26�

�w

�t
+ u

�w

��
+ v

�w

��
= − Pz +

�2w

��2 +
�2w

��2 − MnMH2w �27�

under the boundary conditions

� = 0 or � = 1 and 0 � � � 1: u = v = w = 0,

�28�

� = 0 or � = 1 and 0 � � � 1: u = v = w = 0. �29�

The two parameters appearing in the problem under consid-
eration are the magnetic numbers MnF and MnM due to FHD

and MHD, respectively,

Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
MnF =
h̄2�̄0K̄H̄0

2

�̄2�̄
=

h̄2B̄0M̄0

�̄2�̄
, MnM =

h̄2�̄�̄0
2H̄0

2

�̄�̄
=

h̄2�̄B̄0
2

�̄�̄
,

�30�

where H̄0= H̄�ā ,0�, B̄0= B̄�ā ,0�= �̄0H̄�ā ,0� and M̄0

=M̄�ā ,0�= �̄H̄�ā ,0�. Especially the MnM number is the
square of the widely known MHD Hartmann number.33–35

Increment of the above mentioned numbers, for a specific

fluid ��̄ , �̄ ,M̄0=const� and for a specific flow problem �h̄
=const� means increment of the magnetic field strength B̄0. It
is noted also that the two magnetic numbers are also depen-
dent on the height of the duct. Consequently, for a specific
magnetic field the magnetic numbers can significantly
change by changing the geometric characteristics and this
dependence could be of significant importance from a bio-
logical view point.

The physical problem described by Eqs. �24�–�27� under
the boundary conditions �28� and �29� with MnM =0 is the
one obtained by the application of the existing BFD model of
Haik et al.20 This problem of flow in a straight rectangular
duct using the BFD model of Haik et al. has also been stud-
ied in Refs. 36 and 37.

B. Case II

For the case II where a constant magnetic field is taken
into account, the magnetic force due to FHD vanishes. Thus,
the system of equations governing the flow for the case II is
the same with that of case I setting MnF=0. For the case II,
in the same way as before, the governing system takes the
form

�u

��
+

�v
��

= 0, �31�

�u
+ u

�u
+ v

�u
= − P� +

�2u
2 +

�2u
2 , �32�

FIG. 3. Grid stretching, the real plane
is the �-� one, whereas the computa-
tional is the x-y plane.
�t �� �� �� ��
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�v
�t

+ u
�v
��

+ v
�v
��

= − Py +
�2v
��2 +

�2v
��2 , �33�

�w

�t
+ u

�w

��
+ v

�w

��
= − Pz +

�2w

��2 +
�2w

��2 − MnMH2w . �34�

The boundary conditions remain the same, namely �28� and
�29�.

C. Grid configuration

For case I, grid stretching is used.51 The stretching is
pictured in Fig. 3, the computational is the x-y plane and the
real one is the �-� plane. The relation between the coordi-
nates is given below:

� � ��x� = a�1 +
sinh��1�x − ���

sinh��1�� � ,

�35�
� � ��y� = �2e
y − �2,

x � x��� = �1 +
1

�1
sinh−1�� �

a
− 1�sinh����� ,

�36�

y � y��� =
1



ln� �

�2
+ 1� ,

where

� =
1

2�1
ln
 1 + �e�1 − 1�a

1 + �e−�1 − 1�a

, �2 =

1

e
 − 1
and �1,


are constants that control the stretching at the � and � direc-
tions, respectively. The transformation of the derivatives is

�

��
=

�

�x

�x

��
,

�2

��2 =
�2

�x2� �x

��
�2

+
�

�x

�2x

��2 , �37�

�

��
=

�

�x

�x

��
,

�2

��2 =
�2

�y2� �y

��
�2

+
�

�y

�2y

��2 . �38�

Thus, the system of equations �24�–�27� by using the rela-
tions �35�–�38�, is transformed to the following:

�u

�x

�x

��
+

�v
�y

�y

��
= 0, �39�

�u

�t
+

�u

�x
�u

�x

��
−

�2x

��2� +
�u

�y
�v

�y

��
−

�2y

��2�
= −

�x

��
Px +

�2u

�x2� �x

��
�2

+
�2u

�y2� �y

��
�2

+ MnF H
�x

��

�H

�x
, �40�

�v
�t

+
�v
�x
�u

�x

��
−

�2x

��2� +
�v
�y
�v

�y

��
−

�2y

��2�
= −

�y

��
Py +

�2v
�x2� �x

��
�2

+
�2v
�y2� �y

��
�2

+ MnF H
�y

��

�H

�y
,

�41�
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�w

�t
+

�w

�x
�u

�x

��
−

�2x

��2� +
�w

�y
�v

�y

��
−

�2y

��2�
= − Pz +

�2w

�x2 � �x

��
�2

+
�2w

�y2 � �y

��
�2

− MnMH2w , �42�

where

�x

��
=

sinh����
a��1 + ��/a − 1�2sinh����2

,
�y

��
=

1


�� + �2�
,

�43�

�2x

��2 = −
��/a − 1�sinh����3

a2��1 + ��/a − 1�2sinh����2�3/2 ,

�44�
�2y

��2 = −
1


�� + �2�2 .

The boundary conditions are

y = 0 or y = 1 and 0 � x � 1: u = v = w = 0, �45�

x = 0 or x = 1 and 0 � y � 1: u = v = w = 0. �46�

For case II of constant magnetic field a uniform grid is used.
Thus the system of the governing equations is the one of
�31�–�34� replacing � with x and � with y, under the bound-
ary conditions �45� and �46�. This system of equations is
equivalent, for uniform grid, with that of case I by setting
MnF=0.

V. NUMERICAL SOLUTION AND RESULTS

For the study of the steady state of the flow, for both
cases under consideration, a pseudotransient method is used
where the time t plays the role of an iteration parameter until
the steady state is reached. Thus, the system of equations
�39�–�42�, subject to the boundary conditions �45� and �46�,
is solved applying a numerical technique based on the
pseudotransient pressure linked equation method �PLEM�.36

The PLEM scheme is used on a collocated orthogonal
grid. The advantage is that the complexity of the discretized
differential equations using a staggered grid is avoided. In a
collocation grid all the variables are determined at the same
grid nodes whereas, in a staggered grid each variable is de-
termined at different grid points.50

The magnetic susceptibility of blood ��̄
=1050 kgr/m3, v̄=3.1�10−6 m2 s−1 �Ref. 32�� has already

−7

TABLE I. Magnetic field strength and corresponding magnetic numbers.

B �Tesla� MnF �Deoxygenated� MnF �Oxygenated� MnM

2 6.90�105 −1.3�105 0.61

4 2.76�106 −5.21�105 2.46

6 6.21�106 −1.17�106 5.53

8 1.10�107 −2.08�106 9.83

10 1.73�107 −3.25�106 15.36
been measured to be −6.6�10 for the oxygenated and
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3.5�10−6 for the deoxygenated blood, respectively.14–16

Thus the constant �̄ of the equation of magnetization �16�
takes the above-mentioned values depending on which con-
dition of blood is considered. Blood, in particular, also ex-
hibits considerably high static electrical conductivity, which
depends on the hematocrit and the temperature. The electri-

¯

FIG. 4. Axial velocity profiles and corresponding contours
cal conductivity � of stationary blood was measured to be

Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
0.7 sm−1.24 The electrical conductivity of flowing blood is
always greater than that of the stationary blood. The incre-
ment for medium shear rates is about 10% and increases with
the increment of the hematocrit.22 In the current study the
electrical conductivity of blood is assumed, for simplicity,
temperature independent and equal to 0.8 sm−1.

ifferent magnetic field strengths for the oxygenated blood.
for d
From the definition of the MnF it is apparent that
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MnF =
h̄2�̄0�̄H̄0

2

�̄2�̄
=

h̄2B̄0
2�̄

�̄2�̄�̄0,
�47�

where �̄0 is the magnetic permeability of vacuum equal to

4��10−7 Hm and B̄0 is the magnetic field induction at the

point �0.5,0�. For h̄=2.5�10−2 m, which corresponds to
cross-section of a large vessel, it is apparent that MnF�−3
�106 for the oxygenated and MnF�1.5�107 for the deoxy-
genated blood, respectively.

From the definition also of MnM it is apparent that

MnM =
h̄2�̄�̄0

2H̄0
2

�̄�̄
=

h̄2�̄B̄0
2

�̄�̄
. �48�

As it was already mentioned, the blood exhibits magnetiza-
tion and also holds the property of an electrically conducting
fluid. Most of the biofluids due to the existing ions in the
body may be influenced by the magnetic field only due to
their electrical conductivity. In order to study the effect of
the magnetic field due only to the electrical conductivity,
MnF can be set to zero and MnM may vary. If the opposite is
done then it is possible to study the effect of the magnetic
field due to the magnetization of the fluid. In the present
study when the blood is exposed to the uniform magnetic
field the MnF is set to zero. Thus, studying the blood in
uniform magnetic field is qualitatively equivalent with study-
ing one biofluid which exhibits only electrical conductivity.
It is also reminded that the existing model of BFD of Haik
et al. is obtained by the present one by setting MnM =0.

The magnetization of blood can be increased by adding
artificially created nanoparticles.21 As a consequence, the
MnF for a specific magnetic field strength can be increased
several orders of magnitude. Equivalently, a specific MnF,
when the magnetic particles are added, may correspond to
much lower �even to some thousand gauss� magnetic field
intensity. This practically means that blood except from para-
magnetic or diamagnetic material, can be considered as fer-
romagnetic fluid when the magnetic particles are added.

In the present study, normal blood �without artificial
nanoparticles� is considered and the corresponding Mn num-
bers, for a specific magnetic field of strength intensity B, are
calculated from the relations �47� and �48�. For both cases I
and II the B0 in the relations �47� and �48� is considered the

same with the imposed magnetic field strength B̄= �̄0H̄. The
difference between the two cases is in the calculation of the

dimensionless magnetic field strength intensity H̄ in the flow
field. For the case I H is calculated by the relations �15� and
�21�, whereas for the case II H is constant all over the flow
domain. Representative values of the magnetic numbers

used, for h̄=2.5�10−2 m, are shown in Table I.

A. Case I

The profiles and corresponding contours for different
magnetic field strengths, for varying magnetic field strengths
and for the oxygenated blood are shown in Fig. 4. Especially
for B=0 �hydrodynamic case�, the magnetic field strength
H�x ,y� for the varying case is also pictured. For the other

cases of the magnetic field strength, the axial velocity profile

Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
W�x ,y��w, the contours of this velocity and the stream
function ��x ,y� in the transverse plane, are pictured in three
columns, for each magnetic field strength case. The values
printed in the x-y axes are the number of grid points used for
the calculation which in the present case is 75�75. It is
obtained that the axial velocity W�x ,y� is reduced as the
magnetic field strength increases. From the second column it
is also clear that the maximum of the axial velocity is some-
how “attracted” toward the area where the magnetic source is
located. Finally, from the third column it is obtained that a
secondary flow is generated in the transverse plane as the
magnetic field increases. The secondary flow occurs in the
form of two vortices rotating from the outer walls to the
center of the duct as shown in the aforementioned Fig. 4. The
flow at the transverse plane is obviously symmetric with re-
spect to the point where the magnetic field is applied.

In Fig. 5 the profiles and corresponding contours for
different magnetic field strengths for a spatially varying mag-
netic field and for the deoxygenated blood are pictured. The
applied magnetic field intensity H�x ,y� is the same with that
pictured in Fig. 4 for B=0. For this case it is also obtained
that the axial velocity W�x ,y� is reduced as the magnetic
field strength increases. However, in this case the magnetic
field seems to “turn away” the blood. The flow at the trans-
verse plane is again symmetric with respect to the point
where the magnetic field is applied and it appears in the form
of two vortices. In this case these two vortices are rotating in
an opposite way with that of the previous case and they are
rotating from the center plane toward the two outer walls.
From Fig. 5 it is also obtained for the case of deoxygenated
blood that the magnetic field affects stronger the axial veloc-
ity W�x ,y� than that of the oxygenated blood.

The aforementioned results for the deoxygenated blood
in spatially varying magnetic field are qualitatively similar to
those obtained for a magnetic fluid in varying magnetic field
in Refs. 25, 36, and 37. The behavior also of oxygenated
blood, which at the transverse plane seems to be “attracted”
from the magnetic source, whereas the deoxygenated seems
to be “turned away,” is justified due to its diamagnetic and
paramagnetic nature, respectively.

B. Case II and results in conjunction with case I

The axial velocity profiles for uniform magnetic field are
shown in Fig. 6. This case qualitatively corresponds to
MnF=0 as mentioned above. Under the action of the uniform
magnetic field no secondary flow is formed and the magnetic
field in that case affects only the axial velocity. As the mag-
netic field strength increases the axial velocity is reduced.

The mean velocity w̄av passing through the cross section
ABCD �see Fig. 1� is given by

w̄av =
1

h̄2
�

0

h̄ �
0

h̄
w̄ dx̄ dȳ , �49�
which, using �21�, can be written as
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w̄av =
v̄

h̄
�

0

1 �
0

1

w dx dy . �50�

Thus, the Reynolds number defined by Re= w̄avh̄ / v̄, can be

FIG. 5. Axial velocity profiles and corresponding contours f
written as
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Re = �
0

1 �
0

1

w dx dy �51�

and is calculated after the solution of the problem under con-
sideration. From �51� it can be observed that the Re number

fferent magnetic field strengths for the deoxygenated blood.
for the specific problem represents actually the flow rate
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passing through the cross section ABCD �see Figs. 1 and 2�.
The number Re*=100��Re−Re0� /Re0� is defined in order to
investigate the influence of the magnetic field in the flow rate
for different values of the magnetic numbers MnM and MnF,
where Re0 is the Re number for MnM =MnF=0. Conse-
quently, Re* represents the percentage change of Re and con-

FIG. 6. Axial velocity profiles for different magnetic field

FIG. 7. Percentage variation of Re with the magnetic field strength for
constant and varying magnetic field for oxygenated and deoxygenated

blood, respectively.

Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
sequently of flow rate, due to the presence of the magnetic
field.

The variation of Re* with the magnetic field intensity B,
is pictured in Fig. 7. It can be observed that the least influ-
ence occurs for the varying magnetic field and oxygenated
blood. The deoxygenated blood in varying magnetic field is

gths for the oxygenated blood and uniform magnetic field.

FIG. 8. Percentage variation of f Re with the magnetic field strength for
constant and varying magnetic field for oxygenated and deoxygenated
stren
blood, respectively.
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affected more than blood in constant magnetic field for mag-
netic field strength up to 7.5 Tesla. For greater values of the
magnetic field, the blood in constant magnetic field is af-
fected more. For magnetic field of 10 T the flow rate is
reduced by 42%, 32% and 10% for constant magnetic field,
varying magnetic field and deoxygenated blood and oxygen-
ated blood in varying magnetic field, respectively.

An important flow characteristic is the dimensionless
skin friction coefficient f of the flow, given by the expression

f = −
P̄zh̄

�̄w̄av
2 . �52�

With the use of �21� and �49�–�52� the following nondimen-

FIG. 9. Axial velocity and contours of the stream function at the transverse
forms of magnetic field intensity.
sional product is obtained:

Downloaded 22 Jul 2005 to 150.140.170.208. Redistribution subject to
f Re = −
Pz

Re
. �53�

In order to investigate the influence of the magnetic field in
the blood flow we define, for different values of the magnetic
number MnF or MnM, the number f Re*=100��f Re
− f Re0� / f Re0�, where f Re0 is the f Re number for MnM

=MnF=0. Consequently, f Re* represents the percentage
change of f Re due to the presence of the magnetic field. The
variation of f Re* with the magnetic field intensity is shown
in Fig. 8. The smallest variation is observed for the varying
magnetic field and oxygenated blood where the increment of
f Re is 10% for magnetic field 10 T. The highest increment is

for deoxygenated blood for MnM =0 and for the present model for different
plane
observed for varying magnetic field and deoxygenated blood
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untill 7.5 T where the increment is by 40% and becomes the
same with blood in constant magnetic field. For higher mag-
netic field the f Re increases with the highest rate and at 10 T
magnetic field intensity reaches increment of almost 75%
whereas the increment for deoxygenated blood is 45%.

It is noted that the percentage variation of f Re, f Re*, as
well as the percentage variation of Re, Re*, with the mag-
netic field intensity are independent of the Pz and thus of the
Re number. The results also presented in Figs. 4–6 are quali-
tatively the same regardless of the Pz number. The presented
results are obtained for Pz=15 000, which results to Re
=526 for B=0. Calculations where also performed for Pz

=5000 and 25 000.

C. Comparison with the BFD model of Haik et al. and
effect of the magnetic field gradient

In order to investigate the contribution of the electrical
conductivity in the derivation of the mathematical model,
calculations where performed setting MnM =0 for varying
magnetic field �Eqs. �39�–�42��. For MnM =0 the mathemati-

FIG. 10. Percentage variation of f Re with the magnetic field strength for dif
the present model.
cal model is that of BFD proposed by Haik et al. in Ref. 20.
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Figure 9 shows the axial velocity W�x ,y� �columns 2 and 3�
and contours of the stream function at the transverse plane
�4th column� for deoxygenated blood for different forms of
magnetic field intensity �1st column� and for B=10 T at the
magnetic source. It is obtained that, qualitatively speaking,
the results are similar and discarding the electrical conduc-
tivity �MnM =0, 2nd column� leads to overestimation of the
axial velocity mostly when the magnetic field gradient is
smaller �1st and 2nd row�. For sharp magnetic fields tending
to zero very fast such as 3rd and 4th row, there is almost no
difference. The pattern of the flow field in the transverse
plane �4th column� remains the same for each case of mag-
netic field gradient regardless of the electrical conductivity.
Another result that can be obtained from Fig. 9 is the effect
of the magnetic field gradient on the flow. The sharper mag-
netic field leads to stronger secondary flow and greater re-
duction of the axial velocity and consequently of the flow
rate.

The reduction of the flow rate with the magnetic field
strength and for different kinds of magnetic field gradients,

t kids of varying magnetic field for deoxygenated blood for MnM =0 and for
feren
for deoxygenated blood, is pictured in Fig. 10. For each type
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of magnetic field gradient the calculations are performed
twice. One using the present model and one the existing
model of Haik et al. �MnM =0�.

Consideration of electrically nonconducting fluid �MnM

=0� for the smoothest magnetic field gradient leads to reduc-
tion of flow rate almost by 10%, whereas consideration of
the electrical conductivity leads to flow reduction almost by
23%. The difference of the estimations between the two
models reduces as the magnetic field gradient is sharper and
it is getting greater for greater values of the magnetic field
intensity. For the sharpest magnetic field there is almost no
difference between the two models. Analogous variation is
observed for the oxygenated blood.

Summarizing, the electrical conductivity of blood leads
to the increase of significant Lorentz force which should be
included, together with the magnetization force, in the gov-
erning equations of the corresponding mathematical model
for blood flow in spatially varying magnetic field. For the
case of sharp magnetic field gradients the existing model of
BFD of Haik et al. could be used as a good approximation
whereas for smoother magnetic field gradients the present
model is proposed. Finally, for uniform magnetic field,
where the model of Haik et al. cannot be applied, the blood
can be treated as a magnetic fluid in MHD, which is a case
that is also covered by the present model.

VI. CONCLUSIONS

In this work a mathematical model of BFD is proposed.
As an application the 3D blood flow in a rectangular duct
under the action of a magnetic field is numerically studied.
Generally, the magnetic field reduces the flow rate. The
greater effect of the magnetic field occurs for deoxygenated
blood in spatially varying magnetic field and the flow rate
can be reduced, for strong magnetic fields, even by 40%.
Secondary flow occurs in the transverse plane only for spa-
tially varying magnetic field in the form of two rotating vor-
tices. The form of the magnetic field gradient plays an im-
portant role and substantially determines the flow field. The
consideration of the electrical conductivity is also necessary
especially for the cases of relatively smooth magnetic field
gradients and uniform magnetic field. The Lorentz force can
be omitted, as it happens according to the model of BFD of
Haik et al., only for the regions of application of very sharp
magnetic field gradients. For the uniform magnetic field only
the axial velocity reduces and no secondary flow occurs. The
decrement of flow rate is less than that of the spatially vary-
ing magnetic field and reaches the 10% for strong magnetic
field.
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