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Biomagnetic �uid �ow in a 3D rectangular duct
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SUMMARY

The laminar, incompressible, three-dimensional, fully developed viscous �ow of a non-conducting
biomagnetic �uid in a impermeable rectangular duct is numerically studied in the presence of an ap-
plied magnetic �eld. It is assumed that the magnetic �eld strength is su�ciently strong to saturate the
bio�uid and the magnetization is given as a function of the magnetic �eld intensity. The system of the
partial di�erential equations, resulting after the introduction of appropriate non-dimensional variables, is
solved applying an e�cient numerical technique based on a pressure-linked pseudotransient method on
a common grid. Results concerning the existence and the uniqueness of the solution, are also given. The
obtained results, for di�erent values for the parameters entering into the problem under consideration,
show that the �ow is appreciably in�uenced by the presence of the magnetic �eld. Copyright ? 2004
John Wiley & Sons, Ltd.

KEY WORDS: biomagnetic �uid; numerical; existence and uniqueness of solution of pde; pressure
linked

1. INTRODUCTION

The in�uence of the magnetic �eld on the �ow of bio�uids is extensively investigated because
of numerous applications in medicine [1–3].
The most famous bio�uid, the �ow of which is in�uenced by the presence of a magnetic

�eld, is blood. Blood, speci�cally, holds the properties of a magnetic �uid because of the
existence of a form of iron oxides in the haemoglobin molecule, which appears at very high
concentrations at the mature red blood cells. It was found that the erythrocytes orient with their
disk plane parallel to the magnetic �eld [4–6] and also that the blood possesses the property of
diamagnetic material when oxygenated and of paramagnetic material when deoxygenated [7].

∗Correspondence to: N. G. Kafoussias, Department of Mathematics, University of Patras, Patras 26500, Greece.
†E-mail: nikaf@math.upatras.gr

Contract=grant sponsor: Karatheodoris program of the Research Committee University of Patras; contract=grant
number: 2439

Received 14 August 2002
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted 14 April 2003



1280 E. E. TZIRTZILAKIS ET AL.

In order to investigate the �ow of a biomagnetic �uid, the biomagnetic �uid dynam-
ics (BFD) has been developed [8]. The mathematical formulation of BFD is analogous to
the one of ferrohydrodynamics (FHD), which deals with no electric current, and consid-
ers that the �ow is a�ected by the magnetization of the �uid in the magnetic �eld. Thus,
the resulting equations of BFD are taking into account the magnetization of the �uid, as
opposed to the formulation in magnetohydrodynamics (MHD), which deals with conduct-
ing �uids and the corresponding mathematical model ignores the e�ect of polarization and
magnetization.
So, in the present study, we investigate the laminar, incompressible, three-dimensional, fully

developed, viscous �ow of a non-conducting biomagnetic �uid in a impermeable rectangu-
lar duct under the in�uence of an applied magnetic �eld, using a simpli�ed BFD model.
The magnetization M is considered as a function of the magnetic �eld intensity H . For the
numerical solution of the problem we develop a simple and e�cient technique based on a
pseudotransient pressure-linked equation model on a co-located grid. Special care is taken
in order to avoid oscillatory solutions and divergence. We additionally demonstrate results
regarding the existence of solution we compute numerically.
The results concerning the velocity �eld and skin friction, show that the �ow is appreciably

in�uenced by the magnetic �eld. The presence of the magnetic �eld leads to the appearance
of secondary �ow whereas the axial velocity is considerably reduced.

2. MATHEMATICAL FORMULATION

We consider the laminar, incompressible, three-dimensional viscous �ow, of an electrically
non-conducting biomagnetic �uid in a impermeable rectangular duct of square cross-section of
side h. The �ow is subjected to the action of an applied magnetic �eld of su�cient strength
to saturate the biomagnetic �uid. The magnetic �eld is generated by an electric current going
through a thin wire placed parallel to the axis of symmetry of the bottom plane of the duct,
at distance c below it. As it is shown in Figure 1(a), the �ow is studied at a representative
cross-section ABCD with the origin of the co-ordinate system placed at the point A, while in
Figure 1(b) the contours of the intensity of the magnetic �eld H are shown.
The mathematical model for the BFD is based on the modi�ed Stokes principles and on

the assumption that besides the three thermodynamic variables, e.g. pressure P, density � and
temperature T , the biomagnetic �uid behaviour depends on the magnetization M [8], which
is a measure of the e�ect of the magnetic �eld on the magnetic �uid.
The linear equation relating the magnetization �M with the strength intensity of the magnetic

�eld �H and the temperature �T , is given by �M = �K �H ( �Tc− �T ), where �Tc is the Curie temperature
and �T is the �uid temperature [9]. However, for negligible temperature di�erences we can
consider that the magnetization �M is given only as a function of the magnetic �eld intensity
�H , so that �M = �K �H , where �K is a constant and �H0 is the magnetic �eld strength at the point
(h=2; 0).
Thus, considering that the temperature changes are insigni�cant and a magnetic �eld su�-

ciently strong to saturate the bio�uid we conclude that the governing equations of the �uid
�ow are similar to those derived in ferrohydrodynamics [10, 11]. Hence, at the fully developed
�ow the dimensional velocity components of V=( �u; �v; �w) and the pressure �P are governed
by the mass conservation and the �uid momentum equations at the �x, �y and �z directions,
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Figure 1. The �ow con�guration. The contours of the magnetic �eld strength �H are
shown in the ABCD plane of the cross-section.

which are given, respectively, by
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The boundary conditions of the problem are

�y=0 or �y= h and 06 �x6h: �u= �v= �w=0 (5)

�x=0 or �x= h and 06 �y6h: �u= �v= �w=0 (6)

In the above-dimensional equations, �� is the biomagnetic �uid density, �� is the kinematic
viscosity and ��0 the magnetic permeability.
The terms ��0 �M (@ �H=@ �x)= �� and ��0 �M (@ �H=@ �y)= �� in (2) and (3), represent the components of

the magnetic force per unit mass along the �x and �y axes, respectively. However, the magnetic
force component along the z-direction vanishes because @ �H=@ �z=0.
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The components of the magnetic �eld intensity �Hx and �Hy along the �x and �y co-ordinates,
(H=( �Hx; �Hy)) are given, respectively, by

�Hx=
�
2�

�x − a
(�x − a)2 + ( �y − b)2 ;

�Hy=− �
2�

�y − b
(�x − a)2 + ( �y − b)2

for the problem under consideration �= h=2 and b=−c (see Figure 1). The magnitude �H , of
the magnetic �eld intensity, is given by

�H (�x; �y)= [ �H 2
x + �H 2

y ]
1=2 =

�
2�

1
(�x − a)2 + ( �y − b)2 (7)

where � is the magnetic �eld strength at the point ( �x= a; �y= b).

3. TRANSFORMATION OF EQUATIONS

Introducing the non-dimensional variables
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and splitting the pressure as in Reference [12] under the assumption of the fully developed
�ow we have

P(x; y; z)=P1(z) + p(x; y)

and
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Substituting the above-mentioned relations to (1)–(6) we obtain the equations
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under the boundary conditions

y=0 or y=1 and 06x61: u= v=w=0 (13)

x=0 or x=1 and 06y61: u= v=w=0 (14)

The parameter Mn= h2 ��0 �K �H
2
0=( ��

2 ��) is the dimensionless magnetic number. The system
of equations (9)–(12), subjected to the boundary conditions (13)–(14), is a one parameter,
coupled non-linear system of partial di�erential equations describing the biomagnetic fully
developed �uid �ow in a rectangular duct when the magnetization is given as a function of
the magnetic �eld intensity H .

4. NUMERICAL SOLUTION TECHNIQUE

For the study of the steady state of the �ow we use a pseudotransient method where the time
�t plays the role of an iteration parameter until the steady state is reached. So, we solve the
system of equations (9)–(12), subjected to the boundary conditions (13)–(14), applying a
numerical technique based on the pseudotransient pressure-linked equation method (PLEM)
brie�y mentioned in Reference [12].
It is worth mentioning here that it is unpractical to use the very well-known vorticity-stream

function formulation because the cross-di�erentiation will eliminate not only the pressure but
the terms due to magnetic �eld as well. In addition, the problem under consideration is three-
dimensional and consequently, implementation of vorticity-stream function formulation will
not considerably simplify the governing equations.
Thus, we use the PLEM scheme using a collocated orthogonal grid, for avoiding the com-

plexity of the discretized di�erential equations using a staggered grid. In a collocation grid
all the variables are determined at the same grid nodes whereas, in a staggered grid each
variable is determined at di�erent grid points [12, 13].
The PLEM method allow the following algorithm to be generated from the system of

equations (9)–(12).
Let (u∗; v∗; w∗) be an approximate solution of equations (9)–(12) computed numerically

for a given value of the axial pressure gradient component Pz and an approximate value of
the pressure pn. The variables u∗ and v∗ will not satisfy the continuity equation. However,
the correction of the velocity components introduces the pressure correction p′. Hence, the
required variables are written as

u= u∗ + u′; v= v∗ + v′; p=pn + p′ (15)

Illustrating the determination of the velocity corrections we consider Equation (10) which
in terms of the estimated variables u∗, v∗ and pn takes the form

@u∗

@t
+ u∗

@u∗

@x
+ v∗

@u∗

@y
=−@p

n

@x
+
@2u∗

@x2
+
@2u∗

@y2
+ MnH

@H
@x

(16)
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Subtracting (16) from (10) and using relations (15), we obtain the following linearized equa-
tion for the correction u′:
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The terms (V∗ ·∇)u′ and ∇2u′ usually are neglected in various numerical methods (includ-
ing the initial SIMPLE algorithm [12, 13]) because their consideration increases substantially
the complexity without e�ecting the accuracy of the method. The small magnitude of the terms
(V∗ ·∇)u′ and ∇2u′ has been also proved by the numerical calculation of the convection and
di�usion terms in Equation (17).
So, omitting the small terms (V∗ ·∇)u′ and ∇2u′, from (17), we obtain the equation

@u′

@t
=−@p

′

@x

Hereafter discretizing the time derivative applying the forward di�erence @u′=@t=
(u′n+1 − u′n)=�t and considering that u′=0 at the time step (n) we conclude that the time
step (n+1) the correction u′ will be given by

u′n+1 =−�t @p
′

@x
(18)

Similarly from (11) for the correction v′, we obtain

v′n+1 =−�t @p
′

@y
(19)

Note that for every time step, the correction of the axial velocity is w′=0, due to the
assumption that Pz is a known constant quantity.
At each time step the substitution of (15) into the continuity equation (9), and taking into

account (18) and (19), leads to the Poisson equation, for the pressure correction, of the form
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The boundary conditions of the velocities u∗, v∗ and w∗ at the wall are zero. The boundary
conditions for the pressure correction p′ are obtained from the values of (18) and (19) where
u′= v′=0 at the wall. Hence, the boundary conditions are given by

y=0 or y=1 and 06x61: u∗= v∗=w∗=P′
y =0 (21)

x=0 or x=1 and 06y61: u∗= v∗=w∗=P′
x =0 (22)

Applying the PLEM method iteratively, by marching in time, it is necessary to give initial
guesses (t=0) at all the grid points of the computational domain. For the pressure gradient
Pz=const, we can give any arbitrary negative value. It is noted that in the stagnant situation of
the �uid the transverse pressure gradient forces are balanced by the forces due to the a�ect of
the magnetic �eld [11]. Thus, we start the iteration procedure at the n=0 time level, using, as
initial guesses, zero velocities and for the transverse pressure gradients Px=MnH (@H=@x)+
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10−12 and Py=MnH (@H=@y)+10−12 indicating that the �uid starts moving in the transverse
plane.
The values of u∗ and v∗ for the next iteration, are calculating by the use of the ADI

method [12] from Equation (16) for u∗, and the analogous to (16) equation for v∗. Hereafter,
replacing the values u∗ and v∗ into (20) and solving the equation with the SOR method, the
pressure correction p′ is calculated.
Considering now that p′ is known, the corrections u′ and v′ are also calculated from (18)

and (19), respectively. Thus, at each time level n+1 the required velocities and the pressure,
are now determined by the relations

un+1 = u∗ + u′; vn+1 = v∗ + v′; wn+1 =w∗; pn+1 =pn + p′ (23)

We compare now the new estimations at the time level n+1 with the previous ones at the
time level n, seeking to di�er less than a prescribed quantity �. If the convergence criterion
does not hold, we set the new estimations as the old ones and repeat the iteration procedure
till we reach, to high accuracy, the steady state.
Once the solution is found, we calculate the corresponding Reynolds number Re, to the

given value of Pz, as well as other quantities of interest in a way described in later
session.
It is worth mentioning here, that the use of a common orthogonal grid, does produces

oscillatory solutions. However, these oscillations are decreased considerably using one-sided
�nite di�erences for the implementation of the pressure gradient boundary conditions (21) and
(22), for the solution of (20). For the convergence of the whole scheme also, it is essential
to set a limit for the number of iterations of the SOR method solving (20). During the �rst
iterations we observed that Equation (20) could not be solved up to the accuracy �. So, it
is of critical importance to set a maximum number of iterations together with the desired
accuracy criterion for the solution of (20).
The criterion of convergence � was chosen to be 10−4 for the maximum absolute di�erence

at all the grid points of the computational domain, between the new estimation of an unknown
function f; (fnew) at the time level n+1 and the old one, fold, at the n time level, i.e.
maxi; j|fnew − fold|¡10−4.

5. RESULTS

The main advantage of the numerical technique we described is that it is applicable to a
common grid. However, it seems that slightly oscillations still occur and the numerical results
are not totally independent on the grid density. We observed that oscillations are increasing
not only for relatively sparse grids (40× 40 or 50× 50), but also for relatively dense ones
(90× 90 or 100× 100).
Let (û; v̂; ŵ; p̂) the evaluated solution at all the grid points (i; j) of the computational domain

and Equation (10):

@u
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+ u

@u
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−MnH @H
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Table I. Residuals of the continuity and the u, v and w momentum equations,
respectively, for various grids.

Grid ResCont Resu Resv Resw Mn

60× 60 0:391× 10−5 0:494× 10−3 0:400× 10−3 0.371 0.0
60× 60 0:194× 10−1 0:803× 10−1 0:856× 10−1 0.369 0:1× 107
60× 60 0:349× 10−1 0:706× 10−1 0:745× 10−1 0.375 0:2× 107
60× 60 0:455× 10−1 0:910× 10−1 0:949× 10−1 0.392 0:3× 107
60× 60 0:523× 10−1 0.108 0.1118 0.371 0:4× 107
60× 60 0:420× 10−1 0:429× 10−1 0:434× 10−1 0:818× 10−1 0:5× 107

75× 75 0:288× 10−5 0:266× 10−3 0:248× 10−3 0.575 0.0
75× 75 0:330× 10−5 0:283× 10−3 0:266× 10−3 0.576 0:1× 107
75× 75 0:421× 10−5 0:380× 10−3 0:357× 10−3 0.577 0:2× 107
75× 75 0:725× 10−5 0:594× 10−3 0:617× 10−3 0.578 0:3× 107
75× 75 0:116× 10−4 0:660× 10−3 0:666× 10−3 0.586 0:4× 107
75× 75 0:325× 10−4 0:755× 10−3 0:717× 10−3 0.619 0:5× 107

100× 100 0:372× 10−5 0:770× 10−3 0:726× 10−3 0:103× 10 0.0
100× 100 0:435× 10−2 0:284× 10−2 0:266× 10−2 0:104× 10 0:1× 107
100× 100 0:827× 10−2 0:410× 10−2 0:399× 10−2 0:104× 10 0:2× 107
100× 100 0:117× 10−1 0:564× 10−3 0:743× 10−3 0:104× 10 0:3× 107
100× 100 0:148× 10−1 0:973× 10−2 0:947× 10−2 0:104× 10 0:4× 107
100× 100 0:176× 10−1 0:834× 10−3 0:121× 10−2 0:104× 10 0:5× 107

If the evaluated solution is substituted in the above equation it will not give exactly zero
at each (i; j) point but

@û
@t
+ û

@û
@x
+ v̂

@û
@y
+ P̂x − @2û

@x2
− @2û
@y2

−MnH @H
@x
=Ri; j (24)

The time and spatial derivatives are calculated by backward and central di�erences, respec-
tively, at the (i; j) point.
The residual for this equation, Resu, is de�ned as

Res u =
1
MN

M∑
i=1

N∑
j=1

|Ri; j|

where, M and N is the number of grid points at the x and y directions, respectively. In an
analogous way, we de�ne the residuals for Equations (9), (11), (12) as ResCont, Resv and
Resw, respectively. The obtained results, shown in Table I, indicate that the best choice for
the grid is 75× 75.
For the category of the numerical methods under consideration (pressure linked) the

accuracy is not computed easily and can be at most O(�x2) + O(�y2) [12, 13]. For the
case of the 75× 75 grid the discretization with central di�erences of (24) is of the order
of 10−4.
Keeping in mind that the u and v velocity components are varying from 10–100 the residuals

calculated for the continuity, x and y momentum equations are of the same order of discretiza-
tion of the exact equations and thus, very satisfactory. Moreover, the w velocity component
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takes maximum values 580–420 as the magnetic �eld strength varies from 0–5× 106 and the
corresponding residual of 0.57, as de�ned above, is satisfactory enough, resulting to 1–2%
error.
Clearly, the oscillations in the case of the sparse grids are increasing due to the truncation

errors of the �nite-di�erence approximations of the related equations, whereas, for the dense
ones is due to the round of errors. Thus, the spatial step at the x and y directions is taken
as �x=�y= 1

75 . The minimization of errors, based on stability considerations, is achieved
for time step �t6((�x2 + �y2)=2)=6 [14], so that we choose �t=((�x2 + �y2)=2)=6.
Calculations where made also for �t=((�x2 +�y2)=2)=60 and no di�erences where found.
The use of a collocated grid in pressure-linked equation methods, may result to the ap-

pearance of oscillatory solutions [12, 13]. In our method, these oscillations are decreased
considerably by using one-sided third-order inward �nite di�erences for the implementation
of the pressure gradient boundary conditions (21) and (22), for the solution of (20). The
use of these boundary conditions together with the choice of the best grid, presented above,
eliminates the appearing oscillations in the solution as it can be seen from the obtained results.
The mean velocity �wm passing through the cross-section ABCD (see Figure 1) is given by

�wm =
1
h2

∫ h

0

∫ h

0
�w d �x d �y (25)

while, the dimensionless mean velocity wm, using (8), is written

wm =
�wmh
�
=

∫ 1

0

∫ 1

0
w dx dy (26)

Thus, the Reynolds number de�ned, by Re= �wmh= ��, can be written as

Re=
∫ 1

0

∫ 1

0
w dx dy (27)

and is calculated after the solution of dynamic equations.
It is found that for magnetic �eld of 8 T the blood ( ��=1050 kg=m3; ��=3:1× 10−6 m2=s)

[15], has reached saturation magnetization of Ms = 60 A=m [8]. From the de�nition of the
magnetic number we have

Mn=
h2 ��0 �K �H

2
0

��2 ��
=
h2 �B0 �M 0

��2 ��

where �B0 = ��0 �H0 and �M 0 = �K �H 0 is the magnetic �eld induction and the magnetization at
the point (0.5,0), respectively. For �B0 = 8 T we assume that the magnetic �uid is saturated
(M0 =Ms) and for h=0:01 m it is obtained that Mn≈ 5× 106.
In Figure 2, the axial velocity w is presented graphically for values of the magnetic number

Mn=1× 106– 5× 106. As Mn increases the �ow is retarded near the area where the magnetic
�eld is applied.
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Figure 2. Axial dimensionless velocity w for di�erent values of the magnetic number Mn.
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Figure 3. Contours of the stream function �(x; y) for di�erent values of the magnetic number Mn.

The contours of stream function �, de�ned by the relations

u=
@�
@y
; v=−@�

@x

are shown in Figure 3, for magnetic number 3× 106 and 5× 106, respectively. The stream
function is calculated from the vorticity equation

@2�
@x2

+
@2�
@y2

=−
(
@v
@x

− @u
@y

)

with boundary conditions �=0 at the wall. It is observed that the magnetic �eld generates
two vortices transferring �uid from both sides of the vertical axe-y at x=0:5 toward the
vertical walls of the duct. This secondary �ow strengthens with the increase of the applied
magnetic �eld.
An important �ow characteristic is the dimensionless skin friction coe�cient f of the �ow,

given by the expression

f=
−(@ �P=@ �z)h
�� �w2m

Using relations (8) and (25)–(27) we obtain the following non-dimensional product:

fRe=
−Pz
Re

(28)

In order to investigate the in�uence of the magnetic �eld in the blood �ow we de�ne, for
di�erent values of the magnetic number Mn, the number fRe∗=100((fRe−fRe0)=f Re0),
where fRe0 is the fRe number for Mn=0. Consequently, fRe∗ represents the percentage
change of fRe due to the presence of the magnetic �eld. In Table II the obtained Re num-
ber, the fRe as well as the fRe∗ numbers are shown for various values of the magnetic
number Mn and for axial pressure gradient Pz=−8000. It is observed that as Mn increases,
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Table II. Variation of Re, fRe and fRe∗ with Mn.

Re f Re f Re∗ Mn

265.78 15.049 0.000 0:0× 106
264.20 15.139 0.599 1:0× 106
258.24 15.489 2.919 2:0× 106
246.26 16.242 7.925 3:0× 106
228.03 17.541 16.553 4:0× 106
207.33 19.292 28.192 5:0× 106

Figure 4. Shear stresses acting on ABB′A′ plane (lower wall) and AA′D′D plane (left wall).

the Reynolds number Re decreases whereas the values of fRe∗ are increased. It is worth
mentioning that for an increment in the values of Mn from 0 to 5:0× 106 the corresponding
increment of fRe is 28:19%.
As it was stated above, the Reynold number, Re, is depend on the dimensionless axial

velocity w (Equation (27)). From the de�nition of the magnetic number also, it is obtained
that for a speci�c problem, (h, ��, ��=const) increasing Mn is equal with increasing the
magnetic �eld strength. The increment of the magnetic �eld strength results to the rising of
the force due to the magnetization at the transverse plane and as a consequence the secondary
�ow is generated, and strengthens as the magnetic �eld (Mn) strengthens. Thus, part of the
kinetic energy towards the axial direction is converted, by the e�ect of the magnetic �eld,
to kinetic energy at the transverse plane. Also, due to the way the magnetic �eld is applied
there is no force due to the magnetic �eld towards the axial direction. Summarizing, increasing
Mn strengthens the secondary �ow, the axial velocity component reduces and �nally the Re
number decreases.
Another important �ow characteristic, especially in BFD, is the skin friction coe�cient at

the walls. For its calculation the evaluation of the shear stresses is essential. Let ABCD the
plane where the �ow is studied and A′B′C ′D′ another plane, located one unit downstream and
parallel to the previous one (see Figure 4).
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Figure 5. Variation of Uw
y on the lower wall with distance x.

The shear stresses acting at the ABB′A′ plane (lower wall) are the �yx and �yz in x and z
directions, respectively, and are given by the relations

�yx= ��
(
@ �u
@ �y
+
@ �v
@ �x

)∣∣∣∣
�y=0
= ��

@ �u
@ �y

∣∣∣∣
�y=0

(8)
=

�� ��
h2
@u
@y

∣∣∣∣
y=0

(29)

and

�yz= ��
(
@ �w
@ �y
+
@ �v
@ �z

)∣∣∣∣
�y=0
= ��

@ �w
@ �y

∣∣∣∣
�y=0

(8)
=

�� ��
h2
@w
@y

∣∣∣∣
y=0

(30)

At the AA′D′D plane (left wall) the acting stresses �xy and �xz are given by

�xy= ��
(
@ �u
@ �y
+
@ �v
@ �x

)∣∣∣∣
�x=0
= ��

@ �v
@ �x

∣∣∣∣
�x=0

(8)
=

�� ��
h2
@v
@x

∣∣∣∣
x=0

(31)

and

�xz= ��
(
@ �u
@ �z
+
@ �w
@ �x

)∣∣∣∣
�x=0
= ��

@ �w
@ �x

∣∣∣∣
�x=0

(8)
=

�� ��
h2
@w
@x

∣∣∣∣
x=0

(32)

respectively.
Thus, in order to calculate the stresses acting on the planes it is equivalent to calcu-

late the non-dimensional quantities @u=@y|y=0;1 =Uw
y , @v=@x|x=0;1 =Vwx , @w=@y|y=0;1 =Ww

y and
@w=@x|x=0;1 =Ww

x .
Figure 5 shows the variation of Uw

y with the dimensionless distance x, for the lower wall
(plane ABB′A′, y=0), and for Mn=5× 106. It is observed that as x increases, Uw

y increases
taking its maximum positive value near to the place were the wire is located (x=0:48). For
x=0:5, Uw

y is equal to zero and afterwards decreases taking its minimum negative value for
x=0:52. As x further increases tending to x=1, Uw

y is also increased taking, asymptotically,
its limiting value zero. It is also remarked that the variation of Uw

y (x), for the lower wall, is
symmetrical with respect to the point x=0:5, Uw

y =0.
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Figure 6. Variation of Uw
y on the upper wall with distance x.

Figure 7. Variation of Vwx on the left and right walls with distance y.

The variation of Uw
y , for the upper wall (plane DCC

′D′, y=1) is presented in Figure 6.
The behaviour of Uw

y is reversed with respect to that of the lower plane. However, in this case
the variation is smooth having a parabolic character at each side of x=0:5 and a magnitude
of three orders less than the corresponding one of the lower plane. This was expected since
the magnetic �eld strength decreases as the distance y increases from the wire location.
Figure 7 shows the variation of Vwx , with respect to y, for the right (x=1) and left wall

(x=0). Owing to the symmetry of the �ow �eld Vwx varies in the same way for the right
and left wall, it is negative for all y and its minimum value occurs at y≈ 0:3.
It is reminded that the velocities u, v and w are functions of the spatial co-ordinates x

and y. As a consequence, the above-mentioned quantities, Ww
y and Ww

x are functions only
of x and y, respectively. The variations of Ww, (Ww=Ww

x or Ww
y ) for all the planes with

y or x, respectively, are shown in Figure 8. It is observed that Ww varies almost identically
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Figure 8. Variation of Ww on all walls with the corresponding distance x or y.

for all the planes except the lower one. For the lower wall it is observed an increase of Ww

(Ww
y ) moving towards the point x=0:5. However, close to x=0:5 and within the interval

[0:46; 0:54] a rapid decrement in the values of Ww takes place and the minimum value occurs
exactly on x=0:5.
The obtained numerical results are similar to those obtained from Bashtovoy et al. for

non-conducting magnetic �uid (FHD). For the fully developed �ow in a straight rectangular
duct, under the action of an applied magnetic �eld, they observed that two vortices where
risen at the transverse plane, whereas the axial velocity reduced [16].
It is apparent that the application of the magnetic �eld a�ects considerably the �ow �eld as

well as the shear stresses, especially close to the area of the magnetic pole. These conclusions
suggest that a careful choice of the imposed magnetic �eld will a�ect the �ow characteristics
and hence can be utilized for possible medical and engineering applications.

6. EXISTENCE AND UNIQUENESS OF SOLUTIONS

As already mentioned, the well-known ADI method was used for the calculation of u∗, v∗ and
w∗. For the demonstration of the existence and uniqueness of the above-mentioned solutions
of Equations (10)–(12), we will use Equation (16) with the asterisks omitted.

@u
@t
+ u

@u
@x
+ v

@u
@y
=−@p

@x
+
@2u
@x2

+
@2u
@y2

+ MnH
@H
@x

(33)

During the �rst half of the ADI method (y-constant) an equation is obtained of the form

C1(u;�x)u(i − 1; j) + C2(�x;�t)u(i; j) + C3(u;�x)u(i + 1; j)
= Rhs(u; v; p;�x;�t;Mn); i=1; : : : ; M; j=1; : : : ; N (34)
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In order to study the existence and the uniqueness of the solution of this equation we
consider that the non-linear terms are at the same time level.
Equation (34) is a non-linear di�erence equation with respect to u and can be transformed,

by setting i= i+1 and after some manipulation, to the non-linear partial di�erence equation.

u(i + 2; j) + u(i; j)− 2(�t +�x2)
dt

u(i + 1; j)

=G(i; j)− �x
2
u(i + 1; j)u(i; j) +

�x
2
u(i + 1; j)u(i + 2; j) (35)

where

G(i; j)=�x2(−H (i; j)Hx(i; j) + Px(i; j)− uyy(i; j) + uy(i; j)v(i; j))− 2�x2u(i; j)
�t

and the subscripts denote partial di�erentiation, e.g. ( )x= @( )=@x, ( )y= @( )=@y.
Equation (35) has a unique solution in the Banach space l1NM×NN of all complex sequences

that are summable, i.e. in the space

l1NM×NN =

{
u(i; j) : NM ×NN →C

/
M∑
i=1

N∑
j=1

|u(i; j)|¡+∞
}

(36)

where NM = {1; : : : ; M}, NN = {1; : : : ; N}, provided that one of the following three criteria is
satis�ed [17, Theorem 3.1, relations (3.13), (3.14), (3.13), respectively].
Criterion 1:

N∑
j=1

|u(1; j)|+
N∑
j=1

|u(2; j)|+
M−1∑
i=1

N∑
j=2

|G(i; j)| − �x
4(3�t +�x�t + 2�x2)

¡0 (37)

Criterion 2:

M−1∑
i=1

N∑
j=2

|G(i; j)| − �x
4(3�t +�x�t + 2�x2)

¡0 (38)

Criterion 3:

N∑
j=1

|u(1; j)|+ �t
2(�t +�x2)

M−1∑
i=1

N∑
j=2

|G(i; j)| − �t +�x2

2�t(2 +�x)
¡0 (39)

We mention here that the other conditions required in Reference [17, Theorem 3.1] are
automatically satis�ed.
On the contrary, the second half of the ADI method gives the following linear di�erence

equation with respect to the unknown variable u

C1(v;�y)u(i; j − 1) + C2(�y;�t)u(i; j) + C3(v;�y)u(i; j + 1)
= Rhs(u; p;�y;�t;Mn); i=1; : : : ; M; j=1; : : : ; N (40)
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Equation (40) can be transformed, after some manipulation, to the following linear partial
di�erence equation:

u(i; j + 1)=
−2

−2 +�yv(i; j) G(i; j) + a1(i; j)u(i; j − 1) + b1(i; j)u(i; j)

where

a1(i; j)=
2 +�yv(i; j)
−2 +�yv(i; j) ; b1(i; j)=

−4(�t +�y2)
�t(−2 +�yv(i; j))

For this case, the existence and the uniqueness of the solution of (40) is ensured in the
Hilbert space l2NM×NN of all complex sequences that are square summable, i.e. in the space

l2NM×NN =

{
u(i; j) : NM ×NN →C

/
M∑
i=1

N∑
j=1

|u(i; j)|2¡+∞
}

(41)

provided that one of the following three criteria is satis�ed [18, Theorem 3.1, relations (3.2),
(3.4), (3.3), respectively].
Criterion 1:

sup|a1|+ sup|b1| − 1¡ 0 (42)

Criterion 2:

sup
∣∣∣∣ 1b1

∣∣∣∣¡+∞ and sup
∣∣∣∣ 1b1

∣∣∣∣ (1 + sup |a1|)− 1¡0 (43)

Criterion 3:

sup
∣∣∣∣ 1a1

∣∣∣∣¡+∞ and sup
∣∣∣∣ 1a1

∣∣∣∣ (1 + sup |b1|)− 1¡0 (44)

We mention here that the other conditions required in Reference [18, Theorem 3.1] are
automatically satis�ed.
It is worth mentioning here that the spaces de�ned by (36) and (41) are suitable for

studying partial di�erence equations, arising by the application not only of ADI method but
also of other numerical methods, in the study of physical problems. The theoretical results of
References [17, 18] concern the existence and the uniqueness of non-linear and linear partial
di�erence equations in the more general spaces l1N×N and l

2
N×N, which are de�ned as in (36)

and (41), but now the indexes of the appearing sums are from 1∼∞. In order to use these
results we had considered zero in�nite elements outside the computational domain.
Also, these theoretical results concern complex sequences which, of course, include the real

sequences that we use. We should point out here that the criteria given above are su�cient but
not necessary for the existence and the uniqueness of the solutions of the di�erence equations
under consideration. Thus, if no one of the three criteria, mentioned above, is satis�ed we
cannot conclude anything (at least with this method) about the existence and the uniqueness of
the solutions of the corresponding equations. Similar criteria hold also for the linear and non-
linear partial di�erence equations that describe the �rst and second step of the ADI method
for the partial di�erential equations corresponding to v and w.
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Table III. Calculated values of the right-hand sides of criteria of existence and uniqueness for various
equations and magnetic numbers.

Equation Criterion 1 Criterion 2 Criterion 3 Mn

First half of ADI for U −0:044× 100 0:172× 10−2 −0:173× 100 0.0
Second half of ADI for U 0:140× 102 −0:857× 100 0:140× 102 0.0
First half of ADI for V 0:140× 102 −0:857× 100 0:140× 102 0.0
Second half of ADI for V −0:225× 103 0:172× 10−2 −0:173× 100 0.0
First half of ADI for W 0:140× 102 0:140× 102 −0:857× 100 0.0
Second half of ADI for W 0:140× 102 −0:857× 100 0:140× 102 0.0

First half of ADI for U 0:196× 104 0:236× 105 0:168× 104 0:1× 107
Second half of ADI for U 0:220× 102 −0:763× 100 0:261× 102 0:1× 107
First half of ADI for V 0:164× 102 −0:813× 100 0:213× 102 0:1× 107
Second half of ADI for V 0:174× 104 0:236× 105 0:168× 104 0:1× 107
First half of ADI for W 0:164× 102 0:213× 102 −0:813× 100 0:1× 107
Second half of ADI for W 0:220× 102 −0:763× 100 0:261× 102 0:1× 107

First half of ADI for U 0:471× 104 0:565× 105 0:403× 104 0:2× 107
Second half of ADI for U 0:435× 102 −0:509× 100 0:611× 102 0:2× 107
First half of ADI for V 0:200× 102 −0:749× 100 0:344× 102 0:2× 107
Second half of ADI for V 0:448× 104 0:565× 105 0:403× 104 0:2× 107
First half of ADI for W 0:200× 102 0:344× 102 −0:749× 100 0:2× 107
Second half of ADI for W 0:435× 102 −0:509× 100 0:611× 102 0:2× 107

First half of ADI for U 0:866× 104 0:104× 106 0:742× 104 0:3× 107
Second half of ADI for U 0:272× 103 0:219× 100 0:451× 103 0:3× 107
First half of ADI for V 0:254× 102 −0:652× 100 0:599× 102 0:3× 107
Second half of ADI for V 0:843× 104 0:104× 106 0:742× 104 0:3× 107
First half of ADI for W 0:254× 102 0:599× 102 −0:652× 100 0:3× 107
Second half of ADI for W 0:272× 103 0:219× 100 0:451× 103 0:3× 107

First half of ADI for U 0:144× 105 0:172× 106 0:123× 105 0:4× 107
Second half of ADI for U 0:489× 103 0:531× 100 0:997× 103 0:4× 107
First half of ADI for V 0:343× 102 −0:493× 100 0:115× 103 0:4× 107
Second half of ADI for V 0:141× 105 0:172× 106 0:123× 105 0:4× 107
First half of ADI for W 0:343× 102 0:115× 103 −0:493× 100 0:4× 107
Second half of ADI for W 0:489× 103 0:531× 100 0:997× 103 0:4× 107

First half of ADI for U 0:222× 105 0:267× 106 0:190× 105 0:5× 107
Second half of ADI for U 0:917× 104 0:121× 103 0:233× 105 0:5× 107
First half of ADI for V 0:504× 102 −0:205× 100 0:261× 103 0:5× 107
Second half of ADI for V 0:220× 105 0:267× 106 0:190× 105 0:5× 107
First half of ADI for W 0:504× 102 0:261× 103 −0:205× 100 0:5× 107
Second half of ADI for W 0:917× 104 0:121× 103 0:233× 105 0:5× 107
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In order to verify which of the above-mentioned criteria is satis�ed we compute the left-
hand sides of criteria (37)–(39) or (42)–(44), numerically, and we examine if the quantity
on the left-hand side of these criteria is negative. Table III shows the computed values of the
quantity on the left-hand side of each criterion. It is reminded that the criteria are di�erent
for each step of the ADI method and for each one of the equations with respect to u, v
and w. Notice that for Mn=0, at least one of the criteria is satis�ed and the existence and
the uniqueness of the solutions for the two steps of ADI method, for all equations is ensured.
For Mn=1× 106–2× 106 no one of the criteria is satis�ed for the �rst and second half of
ADI method for u and v momentum equation, respectively. Finally, for Mn=3× 106–5× 106
at least one of the criteria is satis�ed only for the �rst half of v and w momentum equations,
respectively. Consequently, we can strictly assure the existence and the uniqueness of the
solutions only in some steps of the ADI method for u, v and w.

7. CONCLUDING REMARKS

In this work the three-dimensional, fully developed, viscous �ow of a biomagnetic �uid in a
rectangular channel in the presence of an applied magnetic �eld is studied. Numerical results,
by using an e�cient technique based on a pressure-linked pseudotransient method applied on
a common orthogonal grid are obtained. The increment of the magnetic �eld strength leads to
the formation of two vortices as far as concerns the secondary �ow, whereas the axial �ow is
retarded. This phenomenon is extended, especially close to the source of the magnetic �eld,
as the magnetic �eld strength increases. The shear stresses acting on the walls of the channel
are also calculated. It was found that the magnetic �eld considerably in�uence these stresses,
especially those acting on the lower plane near of which is the source of the magnetic �eld.
Criteria are given concerning the existence and the uniqueness of the solution of the linear
and non-linear partial di�erence equations, resulting after the discretization of the momentum
equations applying the ADI method. The existence and the uniqueness of solution, obtained
by the ADI method, is ensured only for some of the di�erence equations, whereas for the
remaining, at least with the theory that was used, there is no answer.
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