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Abstract In this work the fundamental problem of the
biomagnetic (blood) fluid flow in a channel under the
influence of a steady localized magnetic field is studied.
For the mathematical formulation of the problem both
magnetization and electrical conductivity of blood are
taken into account and blood is considered as a homo-
geneous Newtonian fluid. For the numerical solution of
the problem, which is described by a coupled, non linear
system of PDEs, with appropriate boundary conditions,
the stream function–vorticity formulation is adopted.
The solution is obtained by the development of an effi-
cient numerical technique based on finite differences.
Results concerning the velocity and temperature field,
skin friction and rate of heat transfer, indicate that the
presence of the magnetic field influences considerably
the flow field. It is also obtained that the electrical
conductivity of blood should be taken into account at
the area of the uniform magnetic field.

List of symbols

H magnetic field strength (A m�1)
B magnetic field induction ðB ¼ loHÞ (Tesla)
T temperature (K)
Tu temperature of upper plate
Tl temperature of lower plate
L length of plates (m)
h distance between plates (m)
ðx; yÞ components of the cartesian system

ðu; vÞ velocity components
p pressure
q fluid density (kg m�3)
r electrical conductivity (S m�1)
l dynamic viscosity (kg m�1 s�1)
lo magnetic permeability of vacuum (H m�1)
cp specific heat at constant pressure

(J kg�1 K�1)
k thermal conductivity (J m�1s�1 K�1)
M magnetization of the fluid (A m�1)
K constant
Tc Curie temperature
a1, a2 constants
ur maximum velocity at the entrance ðm s�1)
J ¼ Jðx; yÞ vorticity function
W ¼ Wðx; yÞ stream function
Re Reynolds number
Pr Prandtl number
Ec Eckert number
� temperature number
MnF magnetic number (FHD)
MnM magnetic number (MHD)

1 Introduction

A Biomagnetic fluid is a fluid that exists in a leaving
creature and its flow is influenced by the presence of
magnetic field. The study of the flow of a biological fluid
under the influence of a magnetic field is investigated
recently by many researchers due to the applications
which seem to be numerous in bioengineering and
medicine [1–7]. The most characteristic biomagnetic
fluid is blood, which behaves as a magnetic fluid, due to
the complex interaction of the intercellular protein, cell
membrane and the haemoglobin, a form of iron oxides,
which is present at a uniquely high concentration in the
mature red blood cells. Moreover, its magnetic property
is affected by factors such as the state of oxygenation.

The first who reported that the erythrocytes orient
with their disk plane parallel to the magnetic field where
Pauling and Coryell. They also found that blood
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possesses the property of diamagnetic material when
oxygenated and paramagnetic when deoxygenated [8].
Since then, several investigators studied the orientation
of erythrocytes in magnetic fields of strength 1–8 Tesla
[9–11]. Moreover, it was found that other cells of blood,
except the erythrocytes, like platelets, also orient with
the applied magnetic field [12].

In order to investigate the flow of a biomagnetic fluid
under the action of an applied magnetic field Haik et al.
developed the mathematical model of Biomagnetic fluid
dynamics (BFD) [4, 13, 14]. They considered blood as a
non electrically conducting fluid and derived the math-
ematical model based on the principles of Ferro hydro
dynamics (FHD) [15–21].

Primary role in FHD, and thus in BFD, plays the
magnetization M of the biofluid. The magnetization is a
quantity which expresses how much the magnetic field
affects the magnetic fluid and generally is a function of
the magnetic field intensity H and the temperature T .

Thus, unlike ‘‘Magnetohydrodynamics’’ (MHD),
which deals with conducting fluids, the aforementioned
mathematical model of BFD, ignores the effect of
polarization and magnetization and the induced current
is negligibly small. In that model of BFD, unlike MHD,
Lorentz force is much smaller in comparison to the
magnetization force.

The magnetization force depends on the existence of
a spatially varying magnetic field. According to the
above mentioned mathematical model, biofluids are
considered as poor conductors and the flow is affected
only by the magnetization of the fluid in a spatially
varying magnetic field.

However, blood in particular, exhibits considerably
high static electrical conductivity, hematocrit and tem-
perature dependence. Moreover, the electrical conduc-
tivity of blood varies as the flow rate varies [22–24].
Consequently, in order to investigate the effect of a
localized uniform magnetic field on an electrically con-
ducting biofluid, like blood, it is necessary to include
into the mathematical model of BFD the arising Lorentz
force as it happens in MHD [25–27].

As the biofluid enters and leaves the locally applied
magnetic field, where the gradient of the magnetic field
strength is high, the force due to magnetization arises,
whereas, in the region inside of which the magnetic field is
uniform, the Lorentz force prevails. In the present study
the mathematical model of BFD is extended, using the
principles of MHD, in order to include the effect of the
electrical conductivity of blood under an applied magnetic
field. Thismodel of BFD is used to obtain numerical results
regarding the fluid flow (blood) in a rectangular channel
under the action of a localized uniform magnetic field.

The flow is assumed to be two dimensional, laminar,
incompressible and the magnetization is described by a
linear equation involving the magnetic intensity H and
the temperature T . The two impermeable plates of the
channel are kept at different constant temperatures and
as far as the magnetic field is concerned, equilibrium
flow is assumed. The biofluid is blood and it is considered

as a homogeneous and Newtonian fluid (flow in large
vessels) as in [28, 29]. The above mentioned simplifications
may not be very realistic but are appropriate for a first
understanding of the physical problemunder consideration.

In order to proceed to the numerical solution of the
coupled, non linear system of PDEs involved in the
model used in the present paper, the stream function–
vorticity formulation is adopted and the solution of the
problem is obtained numerically by the development of
an efficient numerical technique using finite differences.
This technique assures that in the algebraic system
arising after the discretization, the matrix of the un-
knowns is diagonally dominant.

The results concerning the velocity and temperature
field, skin friction and rate of heat transfer presented,
show that the flow is influenced considerably by the
magnetic field. The major effect is the formation of two
vortices which arise at the areas where the magnetic field
starts and stops to apply. The temperature is also
increasing within the area where the magnetic field is
applied. These results indicate that the application of a
magnetic field, in the flow of a biomagnetic fluid, could
be useful for medical and engineering applications.

2 Mathematical Formulation

The viscous, steady, two-dimensional, incompressible,
laminar biomagnetic fluid (blood) flow is considered
taking place between two parallel flat plates (channel).
The length of the plates is �L and the distance between
them is �h. The flow at the entrance is assumed to be fully
developed and the upper plate is kept at a constant
temperature �T u, while the lower at �T l, such that
�T l < �T u.The origin of the Cartesian coordinate system is
located at the leading edge of the lower plate. The flow is
subject to a locally applied uniform magnetic field, which
is placed between the points ð�x1; 0Þ and ð�x2; 0Þ and acts
perpendicularly to the x direction (see Fig. 1).

As already mentioned in the introduction, the BFD
model of Haik et al. [4, 13, 14] does not take into con-
sideration the electrical conductivity of blood. However,
the Lorentz force, which is due to the electrical conduc-
tivity of blood, is not negligible in the region where the
uniform magnetic field is applied and should be taken
under consideration. Theoretically, as the biofluid enters
and leaves the locally applied magnetic field, where the
gradient of the magnetic field strength is high, the force
due to magnetization as well as the Lorentz force arise. In
the region inside of which the magnetic field is uniform
the Lorentz force prevails and the magnetization force
becomes zero. Also, due to the way the magnetic field is
applied, the gradient of the magnetic field strength exists
only along the x direction, whereas is zero along the y
direction. The Lorentz force will arise due to the velocity
component u which is transverse to the magnetic field.

Blood is considered as a homogeneous, electrically
conducting biomagnetic fluid and Newtonian behavior
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is assumed. The rotational forces acting on the ery-
throcytes when entering and leaving the magnetic field
are discarded (equilibrium magnetization). This
assumption, even though it is a simplification, is very
close to reality and experiments show that is valid for
blood [14].

At the channel flow, under the above assumptions,
the dimensional velocity components of ~q¼ð�u; �vÞ, the
pressure �p and the temperature �T , are governed by the
mass conservation, the fluid momentum equations at the
�x, �y directions, and the energy equation, which are given
respectively by

o�u
o�x
þ o�v

o�y
¼ 0; ð1Þ

�q �u
o�u
o�x
þ �v

o�u
o�y

� �
¼ � o�p

ox
þ �l0

�M
o �H
o�x
� �r �B2�u

þ �l
o2�u
o�x2
þ o2�u

o�y2

� �
; ð2Þ

�q �u
o�v
o�x
þ �v

o�v
o�y

� �
¼ � o�p

o�y
þ �l

o2�v
o�x2
þ o2�v

o�y2

� �
; ð3Þ

�q�cp �u
o�T
o�x
þ�v

o�T
o�y

� �
þ �l0

�T
o �M
o �T

�u
o �H
o�x
þ�v

o �H
o�y

� �
� �r �B2�u2

¼ �k
o2 �T
o�x2
þo2 �T

o�y2

� �
þ�l 2

o�u
o�x

� �2

þ2 o�v
o�y

� �2

þ o�v
o�x
þo�u

o�y

� �2
" #

:ð4Þ

The boundary conditions of the problem are

Inflow ð�x¼0;0� �y� �hÞ : �u¼ �uð�yÞ; �v¼0;
�T ¼ �T ð�yÞ

Outflow ð�x¼ �L;0� �y� �hÞ : oð�RÞ=o�x¼0

Upper plate ð�y¼ �h;0��x� �LÞ : �u¼0; �v¼0; �T ¼ �Tu

Lowerplate ð�y¼0;0��x� �LÞ : �u¼0; �v¼0; �T ¼ �Tl

9>>>>>=
>>>>>;
: ð5Þ

In the above equations �uð�yÞ is a parabolic velocity profile
corresponding to the fully developed flow, �T ð�yÞ is a
linear profile, �R stands for �T , �u or �v, �q is the biomagnetic
fluid density, �r is the electrical conductivity, �l is the
dynamic viscosity, �lo is the magnetic permeability of
vacuum, �cp is the specific heat at constant pressure, �k is
the thermal conductivity, �T is the temperature, �H is the
magnetic field strength, �B is the magnetic induction
( �B¼ �lo

�H ) and the bar above the quantities denotes that
they are dimensional.

The term �lo
�Mo �H=o�x in (2), represents the component

of the magnetic force, per unit volume, and depends on
the existence of the magnetic gradient. The term

�l0
�T o �M

o �T �u o �H
o�x þ �v o �H

o�y

� �
in (4), represents the thermal power

per unit volume due to the magnetocaloric effect. These
two terms arise due to the FHD [15–21].

The term �r �B2�u appearing in (2), represents the
Lorentz force per unit volume and arises due to the
electrical conductivity of the fluid, whereas the term
�r �B2�u2 in (4) represents the Joule heating. These two
terms arise due to the MHD [25–27].

For the variation of magnetization �M , with the
magnetic field intensity �H and temperature �T , the fol-
lowing relation derived experimentally in [30] is consid-
ered

�M ¼ �K �Hð �Tc � �T Þ; ð6Þ
where �K is a constant and �Tc is the Curie temperature.

The magnetic field strength intensity H is considered
to be independent of y and is given by the expression

�Hðx; yÞ ¼
�Ho

2
ðtanh½a1ð�x� �x1Þ� � tanh½a2ð�x� �x2Þ�Þ; ð7Þ

where �Ho is the magnetic field strength determined by
the applied magnetic induction ð �B¼ �lo

�HoÞ and x1, x2 are
the points between of which the magnetic field is applied
(see Fig. 1). Consequently, the magnetic field vector is
~B ¼ ð0; �B; 0Þ. The coefficients a1 and a2 determine the
magnetic field gradient at the points x1 and x2, respec-
tively (see Fig. 2).

3 Transformation of equations

In order to proceed to the numerical solution of the
system (1)–(4) with boundary conditions (15) and the
assumptions (6) and (7), the following non dimensional
variables are introduced

x ¼ �x
�h
; y ¼ �y

�h
; u ¼ �u

�ur
; v ¼ �v

�ur
; ð8Þ

p ¼ �p
q�u2

r
; H ¼

�H
�Ho
; T ¼

�T � �Tl

�Tu � �Tl
; ð9Þ

where �ur is the maximum velocity of blood at the
entrance of the channel.

For the numerical solution, the stream function–
vorticity formulation is adopted by introducing the

Fig. 1 Flow domain, the uniform magnetic field of strength �H is applied between the points �x1 and �x2
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dimensionless vorticity function J ¼ Jðx; yÞ and the
dimensionless stream function W ¼ Wðx; yÞ defined by
the expressions

J x; yð Þ ¼ ov
ox
� ou

oy
; ð10Þ

u ¼ oW
oy

; v ¼ � oW
ox

: ð11Þ

Thus, Eq. (1) is automatically satisfied and Eq. (2), (3)
and (4) produce, by eliminating the pressure p from the
first two and substituting (11) in (4) and (10), the fol-
lowing system of equations

r2W ¼ �J ; ð12Þ

r2J ¼ Re
oJ
ox

oW
oy
� oJ

oy
oW
ox

� �
�MnFRe H

oH
ox

oT
oy

�MnMH2 o2W
oy2

; ð13Þ

r2T ¼ Pr Re
oT
ox

oW
oy
� oT

oy
oW
ox

� �

þMnFPr Re Ec Hðeþ T Þ oH
ox

oW
oy

� �

þMnMPr EcH2 oW
oy

� �2

þ Pr Ec
o2W
oy2
� o2W

ox2

� �2

þ4 o2W
oxoy

� �2
( )

: ð14Þ

where r2 is the two dimensional Laplacian operator

r2 ¼ ~r � ~r ¼ ðo2=ox2 þ o2=oy2Þ
� �

.

The non–dimensional parameters entering now into the
problem under consideration are

Re ¼
�h�q�ur

�l
(Reynolds number);

Ec ¼ �u2r
�cpð �Tu � �TlÞ

(Eckert number);

e ¼
�Tl

�Tu � �Tl
(Temperature number);

Pr ¼ �cp �l
�k

( Prandtl number);

MnF ¼
�lo

�H 2
o

�Kð �Tu � �TlÞ
�q�u2

r

(Magnetic number arising from FHD):

MnM ¼
�l2

o
�H2

o
�h2�r

�l
(Magnetic number arising fromMHD):

The new parameters entering into the problems of BFD
are the two magnetic numbers, MnF and MnM , defined
above. It is worth mentioning here that when both these
magnetic numbers are zero the problem is reduced to the
problem of a common hydrodynamic flow in a channel
with heat transfer. Also, for a specific Reynolds number
and temperature difference, increasing these magnetic
numbers is equivalent to increasing the magnetic field
strength �Ho.

3.1 Boundary Conditions

The boundary conditions are implemented following
[31] and they are

Fig. 2 Magnetic field of strength �H with �x for different a1 and a2

Fig. 3 Grid points for the calculation of Ji;m at the boundary point
(i; m)

Inflow ðx ¼ 0; 0 � y � 1Þ : W ¼ 2y2 � ð4=3Þy3; T ¼ y; J ¼ 8y � 4

Outflow ðx ¼ �L=�h; 0 � y � 1Þ : oW=ox ¼ oT=ox ¼ oJ=ox ¼ 0

Upper plate ðy ¼ 1; 0 � x � �L=�hÞ : W ¼ 2=3; T ¼ 1; J ¼ Ji;m

Lower plate ðy ¼ 0; 0 � x � �L=�hÞ : W ¼ 0; T ¼ 0; J ¼ Ji;m

9>>>=
>>>;

ð15Þ

363



where Ji;m is an arbitrary boundary grid point at the
plate calculated by the relation

Ji;m ¼�
Wiþ1;m�1 � 2Wi;m�1 þWi�1;m�1
� �

Dxð Þ2

�
Wi;m�2 �Wi;m�1
� �

3 Dyð Þ2
: ð16Þ

4 Numerical method

For the numerical solution of the system of Eq. (12–14)
an efficient technique has been developed based on a
numerical method described in [31–33].

For the demonstration of the used numerical tech-
nique Eq. (13) is taken into account

r2J ¼ Re
oJ
ox

oW
oy
� oJ

oy
oW
ox

� �

�MnF Re H
oH
ox

oT
oy
�MnM H2 o2W

oy2
: ð17Þ

Equation (17) can be split into two equations, namely

o2J
ox2
� Re u

oJ
ox
¼ G1ðx; yÞ þ Aðx; yÞ; ð18Þ

o2J
oy2
� Re v

oJ
oy
¼ �Aðx; yÞ; ð19Þ

where, Aðx; yÞ is an unknown function and

G1ðx; yÞ ¼ �MnF Re H
oH
ox

oT
oy
�MnMH2 o2W

oy2

The next step is to consider the local transformation for
Eq. (18) for x0 � Dx � x � x0 þ Dx and y = y0:

J x; y0ð Þ ¼ P x; y0ð Þe �c x;y0ð Þ½ �; where c x; y0ð Þ

¼ � Re

2

Zx

x0

u x; y0ð Þ dx; ð20Þ

where Pðx; y0Þ is an unknown function.
Similarly, the local transformation for y0 � Dy � y �

y0 þ Dy for Eq. (19) is considered, this time, for x ¼ x0

J x0; yð Þ ¼ S x0; yð Þe �q x0;yð Þ½ �; where q x0; yð Þ

¼ � Re

2

Zy

y0

v x0; yð Þ dy ð21Þ

and Sðx0; yÞ an unknown function.
Substitution of (20) to (18) and (21) to (19) gives the

following system of equations

o2P
ox2
þ Re

2

ou
ox
�Re2u2

4

� �
P¼ G1 x;y0ð ÞþA x;y0ð Þ½ �ecðx;y0Þ ð22Þ

o2S
oy2
þ Re

2

ov
oy
� Re2v2

4

� �
S ¼ �A x0; yð Þeqðx0;yÞ ð23Þ

By discretizing equations using central-difference
approximations at the point ðx0; y0Þ for the second
order derivatives of (22) and (23), eliminating Aðx0; y0Þ,
between the two new equations and substituting P and
S by their appropriate expressions (20) and (21) at the
corresponding points around ðx0; y0Þ, it is obtained
that

J1ec1 þ J3ec3 þ k2J2eq2 þ k2J4eq4

þ �2þ Re ðDxÞ2

2

ou
ox

				
0

� Re 2u2
0ðDxÞ2

4
� 2k2

 

þ Re ðDxÞ2

2

ov
oy

				
0

� Re2v20ðDxÞ2

4

!
J0

¼ ðDxÞ2G1ðx0; y0Þ þOððDxÞ4Þ þOððDxÞ2ðDyÞ2Þ; ð24Þ
where Dx and Dy is the Cartesian mesh size at the x
and y direction, respectively and k ¼ Dx=Dy. The
number of grid points is M and N at the x and y
direction, respectively. By the subscripts 0, 1, 2, 3 and
4 it is denoted the typical set of grid points ðx0; y0Þ,
ðx0 þ Dx; y0Þ, ðx0; y0þ DyÞ, ðx0 � Dx; y0Þ and ðx0; y0�
DyÞ, respectively.

However, the matrix of unknowns associated with
(24) is not necessarily diagonally dominant, which is a
prerequisite for the convergence of the iterative proce-
dure. Diagonal dominance is obtained by expanding the
exponential terms in Taylor series at the point ðx0; y0Þ
and keeping a sufficient number of terms so that the
order of the truncation error is conserved.

Thus, uðx; yÞ is expanded in Taylor series at the point
ðx0; y0Þ in the increasing direction of x, so that equation
(20) can be integrated to give cðx; y0Þ in powers of
ðx� x0Þ. The constants c1 and c3 are obtained in powers
of Dx if in this latter equation is set successively
x ¼ x0 þ Dx and x ¼ x0 � Dx, respectively.

The values of c1 and c3 are used for the calculation of
ec1 and ec3 in the form of Taylor series, which will be
substituted in the first two terms of the left-hand side of
Eq. (24). The same procedure is followed to deduce
likewise expressions for the other two terms of the left-
hand side member of Eq. (24). In this way and using the
equation of continuity (1), Eq. (17) finally takes the form

k1J1 þ k2J2 þ k3J3 þ k4J4 þ k0J0 ¼ ðDxÞ2G1ðx0; y0Þ; ð25Þ
where

k1 ¼ 1þ Re2u20
8
ðDxÞ2 � Reu0

2
ðDxÞ;

k2 ¼ k2 1þ Re2v20
8
ðDyÞ2 � Rev0

2
ðDyÞ


 �
;

k0 ¼ �2�
Re2u20ðDxÞ2

4
� 2k2 � Re2v20ðDxÞ2

4
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k3 ¼ 1þ Re2u20
8
ðDxÞ2 þ Reu0

2
Dx;

k4 ¼ k2 1þ Re2v20
8
ðDyÞ2 þ Rev0

2
ðDyÞ


 �
:

Similarly, for Eq. (12) and (14) it is obtained that

p1W1 þ p2W2 þ p3W3 þ p4W4 þ p0W0 ¼ �ðDxÞ2J0; ð26Þ
where

p1 ¼ 1; p2 ¼ k2; p3 ¼ 1; p4 ¼ k2;

p0 ¼ �2� 2k2:

d1T1þ d2T2þ d3T3þ d4T4þ d0T0 ¼ ðDxÞ2G2ðx0;y0Þ; ð27Þ
where

G2ðx0; y0Þ ¼MnMPrEcH2 oW
oy

� �2

þMnFPr Re Ec H e
oH
ox

oW
oy

� �

þ Pr Ec
o2W
oy2
� o2W

ox2

� �2

þ4 o2W
oxoy

� �2
" #

;

d1 ¼ 1þ Re2 Pr2u20
8

ðDxÞ2 � RePr u0
2

ðDxÞ;

d2 ¼ k2 1þ Re2 Pr2v20
8

ðDyÞ2 � RePr v0
2

ðDyÞ

 �

;

d0 ¼ �2�
Re2Pr2u20ðDxÞ2

4
� 2k2 � Re2Pr2v20ðDxÞ2

4

�MnF PrReEcH
oH
ox

oW
oy

� �

d3 ¼ 1þ Re2Pr2u2
0

8
ðDxÞ2 þ Re Pr u0

2
Dx;

d4 ¼ k2 1þ Re2Pr2v20
8

ðDyÞ2 þ Re Pr v0
2

ðDyÞ

 �

:

The linear systems (25–27) are sparse and the matrices
associated with them are always diagonally dominant
since the coefficients of the unknowns satisfy the con-
ditions [34]

XN � M

j¼1
j 6¼i

kij

		 		 � kiij j;
XN � M

j¼1
j 6¼i

mij

		 		 � miij j;

XN � M

j¼1
j 6¼i

dij

		 		 � diij j; i ¼ 1; 2; . . . ;N � M

Equations (25–27) can be easily written in a way that
constitutes a scalar tridiagonal system along each x grid
line (i constant) and they are solved using the Thomas
algorithm. It can be seen that this scheme is implicit,
considering each i line constant, and therefore is called
line by line implicit method (L.L.I.M.) [35]. The solution

of the aforementioned equations is achieved iteratively,
by solving, for all i lines, the arising tridiagonal systems
until the unknown function at all the grid points of the
computational domain has been evaluated up to an
accuracy e.

The solution of the aforementioned system is
obtained by using an iterative procedure. An over
relaxation parameter equal to 1.2 was used for the
L.L.I.M.

The steps of the procedure followed are

� Give initial guesses for the interior points of the
computational domain and the boundary conditions.

� Calculate a new estimation for W by solving (25) once,
considering J known.

� Considering W known construct the boundary con-
ditions for J using (16).

� Calculate a new estimation for J by solving (26) using
the L.L.I.M., considering W, T known.

� Considering now W and J known, calculate a new
estimation for T using the L.L.I.M. for (27).

� Compare the new estimation with the old ones. If the
criterion of convergence is not satisfied set the new
estimations old and return to the second step.

The criterion of convergence used is

1

MN

XM
i¼1

XN

j¼1
F nþ1 � F n
		 		< 10�5;

where F n is an estimation of an unknown function F ,
(W, J or T ) at the n iteration.

5 Results and discussion

For the numerical solution of (12–14) it is necessary to
assign values in the dimensionless parameters entering
into the problem under consideration. For this purpose
a realistic case is considered in which blood (�q ¼
1050 kg m�3, �l ¼ 3:2� 10�3 kg m�1s�1) [36], flows
with maximum velocity �ur ¼ 1:828� 10�2m s�1 and the
plates are located at distance �h ¼ 5:0� 10�2 m. In this
case the Reynolds number, Re, is equal to 300. The
temperature of the plates is �Tu ¼ 42�C and �Tl ¼ 10:5�C.
For these values of plate temperatures the temperature
number � ¼ 9.

The electrical conductivity �r of stationary blood was
measured to be 0:7 S m�1 [24]. The electrical conduc-
tivity of flowing blood is always greater than that of the
stationary. The increment for medium shear rates is
about 10% and increases with the increment of the
hematocrit [22]. In the current study the electrical con-
ductivity of blood is assumed, for simplicity temperature
independent, and equal to 0:8 S m�1.

Although the viscosity �l, the specific heat under
constant pressure �cp and the thermal conductivity �k of
any fluid, and hence of blood, are temperature depen-
dent, Prandtl number can be considered constant. Thus,
for the temperature range considered in this problem,
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the value of �cp and �k is equal to 14:286 J kg �1 K�1 and
1:832� 10�3 J m�1 s�1 K�1, respectively, [37] and
hence the Prandtl number is taken equal to 25. For these
values of the parameters the Eckert number is
Ec ¼ 7:43� 10�7.

The new dimensionless parameter appearing in the
problem is the magnetic number MnF which can be
written as

MnF ¼
�lo

�H2
o

�Kð �Tu� �TlÞ
�q�u2r

¼ �lo
�Ho �K �Hoð �Tu� �TlÞ

�q�u2r
¼

�B �M
�q�u2r

; ð28Þ

where �B and �M are the magnetic induction and the
magnetization, respectively. For magnetic field 8 Tesla,
blood has reached magnetization of 40 A m�1 [14].

Using the definition of the Reynolds number, relation
(28) becomes

Fig. 4 Stream function contours for Re ¼ 300 and for various values of MnM and MnF

Fig. 5 Vorticity function contours for Re ¼ 300 and for various values of MnM and MnF
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Fig. 6 Stream function contours and velocity profiles at various positions for MnM ¼ 62:5, MnF ¼ 1139:32 and Re ¼ 300
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MnF ¼
�M �B�h2�q

�l2 Re2
: ð29Þ

From Eq. (29) and the definition of the magnetic
number MnM the following is obtained

MnF

MnM
¼ �q �M

�l �B�r Re2
� 2:051� 106

Re2
: ð30Þ

Thus, for the problem under consideration where a
magnetic field of 8 Tesla is assumed, the values of the
magnetic numbers areMnF � 1139:323 andMnM � 62:5.

It is noted that the assumed magnetic field of 8 Tesla
is considerably high and there may be practical problems
in creating such a magnetic field. However, in many
applications, especially in magnetic drug targeting,
magnetic nanoparticles are injected in the blood in order
to use them as a drug delivery system for localized
therapy [3]. Similar nano-spheres have been constructed
in order to increase the magnetization of blood [38].
These nano-spheres attach to the erythrocytes and as a
consequence the magnetization of blood can be
increased by one or two orders of magnitute. Thus, with
the addition of magnetic nanoparticles in blood it is
possible to achieve the same magnetic number MnF
using magnetic field of order of 1T.

The length of the channel was chosen to be 18,
whereas the magnetic field is applied between the points
x1 ¼ 3:0, x2 ¼ 8 and the parameters a1, a2 appearing in
(7) are both taken equal to 5. The present results where
obtained for grid 701� 41 at the x and y direction
respectively, i.e. 28; 741 grid points. Calculations where
made also for 901 � 45, i.e. 45,951 grid points and no
significant differences where found.

Figures 4, 5 show the stream and vorticity function
contours, respectively, for the values of the above
mentioned parameters and for various magnetic num-
bers. It is observed that the primary effect of the applied
magnetic field is the formation of two vortices at the
area of the points x1 and x2 between of which the mag-
netic field is applied. The first vortex rotates counter-
clockwise, whereas the second one clockwise. These two
vortices are strengthened as the corresponding magnetic
numbers are increased and they are formed even for very
small magnetic numbers like MnF ¼ 113:93 (see Fig. 4).
Between the two vortices and in the region where the
magnetic field is applied one vortex is formed
(MnF ¼ 1139:32; 683:59; 341:80; and 113:93). The ma
gnetic field effects considerably the flow even for very
low values of the magnetic field such as MnF ¼ 11:39,
where only the two main vortices remain. Downstream
the second vortex and outside the area where the mag-
netic field is applied, a relatively big vortex arises at the
upper plate, whereas for relatively strong magnetic fields
(MnF ¼ 1139:32; 683:59; and 341:80) a smaller one
arises at the lower plate. The aforementioned smaller
one vortex vanishes for relatively small magnetic fields
(see Fig. 4).

The profiles of the dimensionless velocity component
u along specific locations in the channel are shown in
Fig. 6. From the profiles at x ¼ 3 and 8 it is obtained
that the first vortex rotates counterclockwise, whereas
the second one clockwise. In the region where the
magnetic field is applied, the biofluid is pressed to the
upper plate due to the rotation direction of the two main
vortices as it can be seen from the velocity profiles at
x ¼ 5 and 7. After the second major vortex and at

Fig. 7 Contours of the dimensionless temperature T for various values of MnM and MnF and for Re ¼ 300
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Fig. 8 Dimensional temperature contours and profiles at various positions for MnM ¼ 62:5, MnM ¼ 1139:32 and Re ¼ 300
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8:5 < x < 11:0 the fluid is directed towards the lower
plate (profile at x ¼ 10:5) and another minor reverse of
the flow takes place close to the lower plate and at
x ¼ 13. Finally, the flow at the exit (x ¼ 18) is again
reverted to fully developed.

It should be remarked that in the absence of the
magnetic field ðMn ¼ 0Þ, the stream function as well as
the vorticity function contours are straight lines and the
velocity profile u is the same with the one shown at the
entrance of the channel in Fig. 6.

The dimensionless temperature contours for the same
values of the magnetic numbers are shown in Fig. 7. For
MnF ¼ 1139:32 and MnM ¼ 62:5, the variation of the
dimensional temperature �T at different positions in the
channel as well as the corresponding contours are shown
in Figs. 8. It is observed that the dimensional tempera-

ture increases with greater rate, close to the lower plate,
than that of the initial linear profile, from the point
x ¼ 2:5 until approximately the point x ¼ 8:0. From this
point until the exit of the channel, the dimensional
temperature decreases with lower rate especially close to
the upper plate (y > 0:5). In general, the dimensional
temperature relatively (to the initial linear profile) in-
creases with greater rate closer to the lower plate
approximately at the area where the magnetic field is
applied (2:5 < x < 8:0), whereas it increases with lower
rate downstream the area where the magnetic field is
applied.

The disturbance in the flow field due to the applied
magnetic field is transferred very far downstream. As a
result, the profile of the temperature at the exit of the
channel differs from that at the entrance. Calculations

Fig. 9 Skin friction coefficient of the lower plate for Re ¼ 300 and
various magnetic numbers

Fig. 10 Skin friction coefficient of the upper plate for Re ¼ 300 and
various magnetic numbers

Fig. 11 Heat transfer parameter of the lower plate for Re ¼ 300 and
various magnetic numbers

Fig. 12 Heat transfer parameter of the upper wall for Re ¼ 300 and
various magnetic numbers
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were made also for different grids and for �L=�h ¼ 25 and
30 to verify this behavior. It is noted that in the absence
of magnetic field the contours of the temperature are
straight, equally spaced, lines.

The most important flow and heat transfer charac-
teristics are the local skin friction coefficient and the
local rate of heat transfer coefficient. These quantities
can be defined by the following relations

Cf ¼
2�sl

�q�u2
r
;Nu ¼ �q�h

�kð �Tu � �TlÞ
; ð31Þ

where, �sl ¼ �l o�u
o�y

� �			
�y¼0;�h

is the wall shear stress and

_�q ¼ ��k o �T
o�y

� �			
�y¼0;�h

is the heat flux between the fluid and

the plates.

By using (8)–(11), the above mentioned quantities can
be written as

Cf ¼
2W00ðx;yÞ

Re

				
y¼0;1

; Nu ¼ oT
oy

				
y¼0;1
¼ T 0ðx;yÞjy¼0;1; ð32Þ

where Nu is the Nusselt number, W00ðx; yÞjy¼0;1 is the
dimensionless wall shear parameter and T 0ðx; yÞjy¼0;1 is
the dimensionless wall heat transfer parameter.

Fig. 13 Stream function contours for MnM ¼ 40 and for different values of MnF and Re

Fig. 14 Profiles of the dimensionless velocity u at various x positions Fig. 15 Profiles of the dimensionless velocity u at various x positions
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The variation of these dimensionless parameters,
for MnF ¼ 1139:32; 341:80 and 11:39, are shown in Figs.
9–12. The wall shear parameters are more influenced at
the points x1 and x2 between of which the magnetic field is
applied. It is remarkable that the variation of each one of
these parameters is qualitatively almost the same as the
MnF varies from 11:39 to 1139:32. The increment of MnF
results to greater variations of these parameters.

The dimensionless wall shear parameter of the lower
plate, W00ðx; yÞjy¼0, is pictured in Fig. 9 for the afore-
mentioned values of MnF . The value of the parameter
increases rapidly in the region x ¼ 2:0 to x ¼ 3:0, where

it reaches its maximum value. From the point x ¼ 3:0,
where the magnetic field starts to apply, a corresponding
decrement takes place and at x ¼ 3:5 this parameter
takes a value close to its original one. The next major
variation takes place in the region x ¼ 7:5 to x ¼ 10. At
the point x ¼ 7:5 the value of the parameter starts to
decrease rapidly and at the point x ¼ 8:0, where the
magnetic field stops, takes its minimum negative value.
From the point x ¼ 8:0 a rapid increment takes place
and at the point x � 8:8 the parameter takes its maxi-
mum positive value. Finally, from the point x � 8:8 the
parameter decreases and takes its original value of the
fully developed flow.

Figure 10 shows the variation of the wall shear
parameter of the upper plate, W00ðx; yÞjy¼1, for the
aforementioned values of MnF . This parameter varies
similarly with the wall shear parameter of the lower plate
as far as the major variations are concerned.

From Figs. 9 and 10 it can be observed that far
downstream, x > 16, the wall shear parameter of both
plates, reaches its original value (at x ¼ 0) corresponding
to the fully developed flow. The important information
that can be obtained, is the points where these param-
eters take their maximum, minimum and zero values. At
the points where the maximum or minimum value of the
shear parameters of both plates is obtained, the skin
friction is maximized whereas at the point where-these
parameters are zero, the skin friction is zero and this
result may be interesting in the case of creation of a
fibrinoid.

Figures 11 and 12 show the variation of the heat
transfer parameter for the lower and upper plate,
respectively. For the lower plate (see Fig. 11) the param-

Fig. 16 Stream function contours for MnM ¼ 0 and Re ¼ 300 for various values of MnF

Fig. 17 Profiles of the dimensionless velocity u at x ¼ 6 for Re ¼ 300,
MnF ¼ 1139:32 and for MnM ¼ 0 and 62:5, respectively
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eter varies almost in the same way for MnF ¼
1139:32; 683:59 and 341:80. The maximum values are
attained at the points x � 2:4; 3:8; 7:1 and 14:5.

For the upper plate (see Figs. 12) the greater maxi-
mum, for all the considered magnetic numbers, is at-
tained after the region of application of the magnetic
field at about 11:5 < x < 13:5. This behavior is justified
by the presence of the large vortex at the upper plate at
the same region (see Fig. 6). A second maximum, but
much smaller than the previous one, appears at the point
x � 8:5 just after the region where the magnetic field is
applied. Far downstream the values of T 0ðx; 0Þ or T 0ðx; 1Þ
do not reach their original values. This happens because,
as already mentioned, the disturbance of the tempera-
ture field is extended far downstream.

As it can be seen from (30), the parameter MnF
depends on the Reynolds number Re. From the defini-
tion of MnM it is also obtained that this number, for a
specific problem (�h ¼ �q ¼ �l ¼ const) and magnetic field,
is constant. Thus, if variation of Re number is consid-
ered due to the change of the velocity �ur at the entrance
of the channel, MnF changes, whereas MnM remains
constant. Figure 13 shows the contours of the stream
function for MnM ¼ 40:0, which corresponds to mag-
netic field strength of 8 Tesla, and Reynolds numbers
500, 400, 300, 200, and 100. The corresponding MnF
numbers are 328.13, 512.70, 911.46, 2050.78 and
8203.13, respectively. It is observed that as the Reynolds
number decreases and the MnF number increases, the
two vortices arise at the points where the magnetic field
begins and ends to strengthen. As these vortices
strengthen, the vortex arising at the upper plate, after
the second major vortex, shrinks. For Re < 300 the
decrement in the extension of the later vortex leads also
to the formation of one more minor vortex downstream
at the lower plate.

As it was already mentioned, blood exhibits magne-
tization and also holds the property of an electrically
conducting fluid. This happens mainly because of the
tendency of erythrocytes to orient with the applied
magnetic field (magnetization) and the appearance of
ions in the plasma (electrical conductivity). Most of the
biofluids due to the existing ions in the body may be
influenced by the magnetic field only due to their elec-
trical conductivity. In order to study the effect of the
magnetic field due only to the electrical conductivity it is
possible to set MnF zero, and let MnM vary. If the
opposite is done then it is possible to study the effect of
the magnetic field due to the magnetization of the fluid.

Figures 14 and 15 show the velocity profiles for dif-
ferent positions in the channel for MnF ¼ 0,
MnM ¼ 40:0 and Re ¼ 300. The velocity profiles start
from the entrance (x ¼ 0) and for x ¼ 3:5; 4:5; 7:5. It is
apparent that the maximum value of the velocity reduces
as the biofluid enters the area where the magnetic field is
applied. In the same manner, the maximum value of the
velocity takes gradually its initial value of the fully
developed flow as the biofluid leaves the area of appli-
cation of the magnetic field (see Fig. 15).

Stream function contours for MnM ¼ 0 (non con-
ducting biofluid),Re ¼ 300 and for variousMnF numbers
are pictured in Figs. 16. It is obtained after comparison
with Fig. 4, where the electrical conductivity is addition-
ally taken into account, that the Lorentz force affects the
area between the two vortices for relatively high MnF
numbers. For MnF ¼ 341:80 the stream function con-
tours are almost the same and for lower values of MnF
(¼ 113:93 and 11:39) the stream function contours are
identical to the corresponding ones of Fig. 4.

Two representative velocity profiles at x ¼ 6, for
MnF ¼ 1139:32 are shown in Fig. 17 for MnM ¼ 0 and
62:50, respectively. The difference of the profiles taking
into account the electrical conductivity of blood is
considerable. It is obtained that the variations in the
velocity profile (maximum and minimum values)
decrease as the electrical conductivity is taken into
account.

Thus, the electrical conductivity of blood cannot be
ignored as it is proposed by the model of Haik et. al. [4,
13, 14] for relatively strong magnetic fields in the area
where the magnetic field is uniform. At the areas where
the magnetic field gradient exists (in our case at the areas
of x ¼ 3 and x ¼ 8) the contribution of the electrical
conductivity is negligible and the model of FHD is a
very good approximation.

The above mentioned results indicate that the appli-
cation of a magnetic field, in the flow of a biomagnetic
fluid should be further studied for possible useful med-
ical and engineering applications.

6 Conclusions

The simplified fundamental problem of the biomagnetic
(blood) fluid flow in a channel under the influence of a
strong, steady, uniform, locally applied, magnetic field is
studied. The numerical solution of the problem is
obtained by the development of an efficient numerical
technique based on finite differences. This technique
assures that in the algebraic system arising after dis-
cretization, the matrix of the unknowns is diagonally
dominant. From the numerical investigation it is
obtained that the electrical conductivity of blood should
be taken into account at the area of the uniform mag-
netic field. At the two points, where the magnetic field
starts and stops to apply, the magnetic field gradient is
high and the assumption that blood is an electrically
non–conducting fluid is a very good approximation.
From the results concerning the velocity and tempera-
ture field, skin friction and rate of heat transfer, it is
obtained that in general the magnetic field influences
considerably the flow field causing the formation of two
vortices at the area of the two points where the magnetic
field starts and stops to apply.
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