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Abstract: The flow and heat characteristics of an unsteady, laminar biomagnetic fluid, namely blood
containing Fe3O4 magnetic particles, under the influence of thermal radiation and a magnetic dipole
over a cylinder with controlled boundary conditions using a group theory method are investigated
in the present study. The mathematical formulation of the problem is constructed with the aid of
biomagnetic fluid dynamics (BFD) which combines principles of ferrohydrodynamics (FHD) and
magnetohydrodynamics (MHD). It is assumed that blood exhibits polarization as well as electrical
conductivity. Additionally, the shape of the magnetic particles, namely cylindrical and spherical,
is also considered. Moreover, in this model, a group theoretical transformation, namely a two-
parameter group technique, is applied. By applying this group transformation, the governing system
of partial differential equations (PDEs) along with applicable boundary conditions are reduced
to one independent variable and, consequently, converted into a system of ordinary differential
equations (ODEs) with suitable boundary conditions. An efficient numerical technique is applied
to solve the resultant ODEs and this technique is based on three essential features, namely (i) a
common finite differences method with central differencing, (ii) tridiagonal matrix manipulation
and (iii) an iterative procedure. The flow and heat characteristics of blood-Fe3O4 are found to be
dependent on some physical parameters such as the particle volume fraction, the ferromagnetic
interaction parameter, the magnetic field parameter, and the thermal radiation parameter. An ample
parametric study is accomplished to narrate the influences of such physical parameters on velocity,
temperature distributions as well as the coefficient of skin friction and rate of heat transfer. From the
numerical results, it is deduced that the fluid velocity is enhanced for the ferromagnetic number and
the temperature profile is decreased as the ferromagnetic number is gradually increased. It is also
obtained that for the cylindrical shape of magnetic particles, the fluid temperature is more enhanced
than that of the spherical shape. Both the skin friction coefficient and the local Nusselt number are
increased for increasing values of the ferromagnetic interaction parameter, where the heat transfer
rate of blood-Fe3O4 is significantly increased by approximately 33.2% compared to that of pure blood,
whereas the coefficient of skin friction is reduced by approximately 6.82%.

Keywords: group theoretical method; biomagnetic fluid dynamics (BFD); blood; magnetic particles;
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1. Introduction

From a theoretical and practical point of view, the studies of biomagnetic fluid dynam-
ics (BFD), which consists of the ideas of ferrohydrodynamics (FHD) and magnetohydrody-
namics (MHD), exhibit much interest to researchers due to their variety of applications in
biomedical and bio-engineering areas as reported early in [1–4] such as drug and gene de-
livery performed by magnetic particles, magnetic resonance imaging (MRI) for imaging, the
reduction in blood during surgeries, cancer treatment, and injury treatment. For researchers
in fluid dynamics, BFD is a comparatively new area, where the effect of the magnetic field
on the biological fluid is studied. In the recent past, this area has received tremendous at-
tention from researchers since it is directly related to non-invasive applications for treating
human body-related diseases and disorders. Moreover, blood is considered as one of the
peculiarities of BFD due to the presence of ions. Blood could be considered to behave as a
Newtonian or non-Newtonian fluid. When blood flows at high shear rates through arteries,
blood can be considered as a Newtonian fluid as mentioned by Chien et al. [5] and the
true non-Newtonian nature of blood should be considered when shear rates are very low
according to the study of Bhatti et al. [6].

The influence of a magnetic field is incorporated in the study of bio-fluids and that is
why the concepts of FHD and MHD need to be introduced. Basically, in ferrohydrodynam-
ics (FHD), fluid is considered electrically non-conducting, where fluid flows are influenced
in the presence of magnetization by the polarization effect. Specifically, when a magnetic
field is exposed to a magnetic fluid such as blood, a measurement of the magnetization can
be made in order to determine how much is affected by the applied magnetic field. Magne-
tization can be described mathematically by involving the magnetic field strength intensity
and/or temperature. On the other hand, in magnetohydrodynamics (MHD), the influence
of magnetization is negligible and fluid flows like an electrically conducting magnetic
fluid. Based on the above-mentioned concept, a mathematical study of BFD considering the
FHD principles was initiated by Haik et al. [7], where fluid is considered as a Newtonian
fluid. The authors found that in the presence of high-gradient magnetic fields, the flow
of a biomagnetic fluid is significantly affected. This mathematical model was extended
by Tzirtzilakis [8], where both principles, namely MHD and FHD, are considered simul-
taneously. The behavior of MHD blood flow under the effect of temperature-dependent
fluid viscosity and thermal conductivity was investigated by Sharma et al. [9]. The impact
of temperature-dependent magnetization on a non-Newtonian biomagnetic fluid using
viscoelastic fluid property over a stretching sheet was studied by Misra et al. [10] and the
numerical solution was obtained by using a finite differences technique. The influence of
thermal radiation and slip conditions on time-dependent blood flow and heat transfer over
an inclined permeable stretching surface was studied by Koppu et al. [11]. The dual behav-
ior of blood flow and heat transfer in the quadratic stretched surface under the influence of
a magnetic dipole was investigated by Murtaza et al. [12] and the authors reveal that, in a
particular range of the suction parameter and stretching/shrinking sheet, the physical solu-
tions, i.e., stable and unstable solutions, are present. Recently, the study of a biomagnetic
fluid under the influence of a magnetic dipole was studied by Murtaza et al. [13], where it
was shown that the combination of MHD and FHD, i.e., BFD flow, is comparatively more
significant than that of MHD, FHD, or pure hydrodynamics flow alone.

In the recent past, many researchers investigated the study of different regular fluids
(water, blood, etc.) by adding different types of nanoparticles (magnetic/non-magnetic).
This is because the heat transfer of a base fluid like blood is significantly improved when
nanoparticles are mixed with a base fluid and this improvement is more effective than con-
ventional heat transfer in fluids where the size of nanoparticles is usually 1–100 nm. When
nanoparticles are mixed with a base fluid, this is known as a nanofluid, initially introduced
by Choi [14]. As far as cylinder flows have been concerned, Alsenafi and Ferdows [15]
showed that depending on the systems’ parameters, dual solutions exist in opposing flow
beyond a critical point where both solutions are connected. The forced convection of a
Al2O3-water nanofluid over a circular cylinder inside a magnetic field was studied by



Mathematics 2022, 10, 3520 3 of 34

Nikelham et al. [16]. In that study, an experimental model as a function of the temperature,
nanoparticle diameter, and volume fraction of the nanofluid was utilized to calculate the
nanofluid’s viscosity and conductivity coefficient. It was found that the model of the
nanofluids is important, and the values of the Nusselt numbers in the experimental model
are different than the Brinkman–Maxwell analytical one. Aminian et al. [17] numerically
studied the MHD forced convection effects of Al2O3–CuO–water nanofluid inside a parti-
tioned cylinder within a porous medium. Nanofluid flow was modeled as a two-phase flow
using a two-phase mixture model, and the Darcy–Brinkman–Forchheimer equation was
employed to model fluid flow in porous media. They demonstrated that incorporation of
nanoparticles to the base fluid increased the performance evaluation criteria in all cases. The
MHD flow of water-based nanofluids across a horizontal circular cylinder was numerically
investigated by Tlili et al. [18]. It was found that skin friction and the local Nusselt numbers
are strong functions of Reynolds and Hartmann numbers, whereas the local Sherwood
number is a strong function of nanofluids parameters. The impact of heat source/sink along
with suction/injection on steady, two-dimensional MHD flow through a stretched cylinder
was developed by Elbashbeshy et al. [19]. Finally, the unsteady magnetohydrodynamic
mixed convection flow of an incompressible hybrid nanofluid (Cu-Al2O3/water) past an
isothermal cylinder with thermal radiation effect has been studied by Roy and Akter [20].
The corresponding results revealed that the hybrid nanofluid (Cu-Al2O3/water) enhances
the heat transfer by approximately 28.28% in comparison to the Al2O3-water nanofluid and
by approximately 51.15% more than in the pure fluid. Contrary to this, the heat transfer of
hybrid nanofluid is augmented by approximately 41.76% more than the Cu-water nanofluid
and by 71.41% more than the base fluid. The significance of melting in the presence of
thermal radiation on Cattaneo–Christov-aligned MHD nanofluid flows together with mi-
croorganism to leading edge is investigated by Ali et al. [21] with an approaching FEM
technique. An analysis of H2O-Al2O3 nanofluid flow over a stretching sheet subject to
prescribed heat flux in the presence of thermal radiation is studied by Kumar et al. [22].
They found that the coefficient of skin friction and thermal boundary layer decreases as
the radius of nanoparticles is enhanced. Dawar et al. [23] examined the effects of Brown-
ian motion and thermophoresis on MHD water-based nanofluid with copper and copper
oxide nanoparticles between two parallel plates. It was found that the heat transfer rate
is increased by approximately 1% between two blade-shaped nanoparticles as Cu and
CuO when the values of volume fraction φ = 0.02 and φ = 0.03. Bilal et al. [24] inspected
the C2H6O2-H2O hybrid nanofluid flow with three different nanoparticles—TiO2, SiO2,
and Al2O3—with activation energy across two infinite parallel plates. They reported that
when nanoparticles are added to a base fluid, the fluid velocity and the heat transfer rate
increase. Souayeh et al. [25] performed a numerical analysis of the flow and heat transfer
of water-silver/gold nanofluid flow through an electromagnetohydrodynamic (EMHD)
peristaltic channel in the presence of activation energy and radiation and microorganisms.
Alwawi et al. [26] applied the Keller box method solutions to recapitulate human blood
and water with CuO, Al, Au nanoparticles assuming a constant surface heat flux subject to
a circular cylinder. The authors reported that gold particles gave better numerical results
compared to Aluminum and copper. The impact of a magnetic dipole on the flow and heat
transfer of blood-MnZnFe2O4 over a cylinder is discussed by Alam et al. [27] with the help
of a group theoretical method approach.

However, from the above-mentioned studies, the authors of the present paper ob-
served that most of the research has been conducted with regular fluid by mixing non-
magnetic particles. To the best of the authors’ knowledge, although there are numerous
studies on stretching sheet and stretching cylinder flows, there are not many studies on
unsteady cylinder flow, where the base fluid (human blood) contains magnetic particles.
The reason behind choosing magnetic particles rather than non-magnetic particles is the use
of magnetic particles in medical applications, which is explained in [28–31]. The proposed
mathematical model is that of BFD, which incorporates two principles, namely MHD and
FHD, where blood is electrically conducting magnetic fluid which also exhibits magne-
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tization. These two terms are interconnected. In most of the studies, researchers on the
blood flow model only consider the magnetization effect, where the fluid is considered as
an electrically non-conducting fluid. From a practical point of view, if we want to destroy
the tumor cells from our body without harming good cells, we can apply a strong magnetic
field in that particular tumor area and determine how much fluid is affected by this applied
magnetic field, which is measured by the mathematical term known as magnetization.
To solve such fluid mechanics problems, several transformation techniques have been
proposed by various researchers. In this paper, a group theoretical method, namely a two-
parameter group method, is applied to solve the blood-based magnetic particles problem
over a cylinder under the influence of a magnetic dipole. By applying this two-parameter
group theoretical method, we can find a group of solutions in terms of various conditions.
Meanwhile, we are frequently in contact with previously derived analogous solutions and
the two-parameter group restores many of these forms and we will find some completely
new ones. Such group theoretical methodology, i.e., the one/two parameter group method,
has been analyzed in [32–36]. By using this systematic method, the number of independent
variables is reduced by one and, consequently, the governing partial differential equations
(PDEs) are transformed into a set of ordinary differential equations (ODEs) along with
suitable boundary conditions which are later numerically solved by applying an efficient
numerical technique, based on a common finite differences method with tridiagonal matrix
manipulation and an iterative procedure. The significant impact of involving parameters
such as the ferromagnetic parameter, the magnetic particle volume fraction, the magnetic
field parameter, thermal radiation, temperature profiles as well as the skin friction coeffi-
cient and the rate of heat transfer is discussed with their respective graphical outcomes.
Two cases are considered for the obtained numerical solutions: the first case concerns the
behavior of pure blood and blood-Fe3O4, whereas the second solution examines the effect
of particle shape on blood-Fe3O4 flow and heat transfer, which is also the key objective of
the present study.

Furthermore, in this study, the maximum temperature for the human body is consid-
ered to be 41 ◦C, which is reasonable for applications in cancer treatment and moreover
noticeable for enzyme function and the function of other proteins of the human body.
Therefore, the current study could be applicable to biomedical sciences especially in drug
administration, cancer therapy, reducing the flow of blood during surgeries, etc. Since, this
study relates to human body related diseases and disorders, it is hoped that it will be impor-
tant not only for understanding flow mechanisms but also for taking prevention measures.

2. Mathematical and Physical Formulation

The schematic representation of the governing co-ordinate system considered in this
study is presented in Figure 1. The fluid considered (blood) contains magnetic particles
(Fe3O4) and flows through a two-dimensional cylinder along the x-axis, where L is the
characteristic length of the cylinder. The flow is considered as unsteady, and the cylinder
has a radius R and the r-axis is the normal direction of the cylinder. The temperature of
the cylinder surface is Tw and the ambient fluid temperature is Tc situated far away from
the surface, with Tw < Tc. A magnetic dipole which is assumed to be located below the
sheet maintaining a distance c, propagates a magnetic field of strength H. Moreover, due
to the presence of FHD principles, the base fluid (blood) exhibits the polarization effect,
where the applied magnetic field is supposed to be strong enough, to attain the equilibrium
of magnetization.
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Due to the aforementioned assumptions and following [8,37], the governing continuity,
momentum, and energy equations in cylindrical coordinates can be written as follows:

Continuity equation:
∂u
∂x

+
v
r
+

∂v
∂r

= 0. (1)

Momentum equation:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

=
µm f

ρm f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
−

σm f B2u
ρm f

+
µ0

ρm f
M

∂H
∂x

. (2)

Energy equation:

(
ρCp

)
m f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂r

)
+ µ0T

∂M
∂T

(
u

∂H
∂x

+ v
∂H
∂r

)
= κm f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
− ∂qr

∂r
. (3)

The boundary conditions accompanying (1)–(3) are [27,35,37]:

r = R : u = 0, v = 0, T = Tw,
r → ∞ : u = 0, T = Tc.

(4)

Here, u and v are the dimensional velocity components along the axis, respectively.
Further, the symbols κ, ρ, Cp, µ, µ0, M, σ, H, qr are known as blood thermal conductiv-
ity, density, specific heat at constant pressure, dynamic viscosity, magnetic permeability,
magnetization, electrical conductivity, magnetic field strength, and radiative heat flux,
respectively. Additionally, B

(
= µ0H

)
is the magnetic induction and the subscript symbol

( )m f means magnetic fluid. The bar above the quantities indicates that the quantities
are dimensional.

Due to the electrical conductivity of the fluid, the term− σm f B2u
ρm f

arising in Equation (2),
represents the Lorentz force per unit volume along the x axis. This term is known from
MHD studies [8,13]. From FHD studies [38–40], the component of the magnetic force
per unit volume is defined by the term µ0

ρm f
M ∂H

∂x , arising in Equation (2) and depends
on the existence of the magnetic gradients on the corresponding x axis, while the ther-
mal power per unit volume due to the magnetocaloric effect, is represented by the term
µ0T ∂M

∂T

(
u ∂H

∂x + v ∂H
∂r

)
arising in Equation (3).
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Raptis [41,42] described the radiative heat flux qr using Rosseland approximation in
such a way that:

qr = −
4σ1

3χ

∂T4

∂r
, (5)

where σ1 is the Stefan–Boltzmann constant and χ is the mean absorption coefficient. The
fluid temperature differences within the flow are supposed to be sufficiently small. Then,
the temperature term T4 may be expressed as a linear function of the temperature, by
expanding T4 in a Taylor series about Tc and neglecting higher-order terms yielding
the expression

T4 ∼= 4T3
c T − 3T4

c . (6)

Thus, the local radiant absorption is given by

∂qr

∂r
= −16σ1T3

c
3χ

∂2T
∂r2 . (7)

Substituting (7) into Equation (3) yields(
ρCp

)
m f

(
∂T
∂t + u ∂T

∂x + v ∂T
∂r

)
+ µ0T ∂M

∂T

(
u ∂H

∂x + v ∂H
∂r

)
= κm f

(
∂2T
∂r2 + 1

r
∂T
∂r

)
+ 16σ1T3

c
3χ

∂2T
∂r2

(8)

According to [43,44], the components Hx and Hr of the magnetic field
→
H =

(
Hx , Hr

)
,

due to the magnetic dipole may be written as follows:

Hx (x, r) = −∂V
∂x

=
γ

2π

x2 − (r + c) 2(
x2 + (r + c)2

)
2

, (9)

Hr (x, r) = −∂V
∂r

=
γ

2π

2x(r + c)(
x2 + (r + c)2

)
2

, (10)

where the scalar potential of the magnetic dipole is defined by V (x, r) = γ
2π

x
x2+(r+c)2 and

γ is the strength of the magnetic field at the source position. The magnetic field strength
intensity H is given by

H(x, r) =
√

H2
x + H2

r =
γ

2π

1

x2 + (r + c)2 , (11)

and the gradients of the magnetic field intensity are obtained by the above relation by
expanding H in powers of x and retaining terms up to x2, taking eventually the form

∂H
∂x

= − γ

2π

2x

(r + c)4 , (12)

∂H
∂r

= − γ

2π

(
−2

(r + c)3 +
4x2

(r + c)5

)
. (13)

Moreover, Matsuki et al. [45] experimentally showed that the magnetization M can be
expressed as a function of the temperature T and the magnetic field strength intensity H is
given by

M = KH
(
Tc − T

)
, (14)

where K is the pyromagnetic coefficient and Tc is the Curie temperature.



Mathematics 2022, 10, 3520 7 of 34

The thermophysical properties of the base fluid and magnetic particles are introduced
according to the studies of Makinde [46], Lin et al. [47] and Kandasamy et al. [48] and
presented in Table 1.

Table 1. Thermophysical properties of the magnetic fluid model [46–48].

Magnetic Fluid Properties Applied Model

Density ρm f = (1− φ)ρ f + φρ s

Dynamic viscosity µm f = µ f (1− φ)−2.5

Electrical conductivity σm f
σf

= 1 +
3
(

σs
σf
−1
)

φ(
σs
σf
+1
)
−
(

σs
σf
−1
)

φ

Heat capacitance (ρCp)m f = (1− φ)(ρCp) f + φ (ρCp)s

Thermal conductivity κm f
κ f

=
(κs+(m−1) κ f )−(m−1) φ (κ f−κs)

(κs+(m−1)κ f )+φ (κ f−κs)

Here, φ denotes the magnetic particle volume fraction and m is the magnetic particle
shape factor such that when m = 3 and m = 6.3698 represent that the particles have
spherical and cylindrical shape, respectively. Further, the notations ( ) f and ( )s stand
for the base fluid and the magnetic particles, respectively. When φ = 0, all corresponding
equations are transformed into a regular fluid model. In this paper, blood is considered as
the base fluid and Fe3O4 as the magnetic particles and their corresponding thermophysical
properties are tabulated in Table 2 according to previous studies [49–51].

Table 2. The values of thermophysical properties of blood and Fe3O4 [49–51].

Physical properties Cp

(
jkg−1K−1

)
ρ
(
kgm−3) σ

(
sm−1) κ

(
Wm−1K−1

)
Blood 3.9× 103 1050 0.8 0.5
Fe3O4 670 5180 0.74× 106 9.7

In order to proceed with the solution of the problem, Equations (1), (2) and (8) together
with the boundary conditions (4) are transformed into dimensionless form by using the
following transformations [27,35,37]:

x =
x
R

, r =
r
R

, u =
u R
υ f

, v =
v R
υ f

, t =
t υ f

R2 , H =
H
H0

, θ =
Tc − T

Tc − Tw
, (15)

where υ f is the kinematic viscosity of the fluid and H0 is the reference magnetic field
strength intensity. Hence, the reduced dimensionless form of the corresponding equations
with boundary conditions are:

∂u
∂x

+
v
r
+

∂v
∂r

= 0, (16)

A1

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

)
=

∂2u
∂r2 +

1
r

∂u
∂r
− A2MnH2u + A3βHθ

∂H
∂x

, (17)

A4Pr
(

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂r

)
+ A5βEcH(ε− θ)

(
u

∂H
∂x

+ v
∂H
∂r

)
= (1 + NrA5)

∂2θ

∂r2 +
1
r

∂θ

∂r
, (18)

r = 1 : u = 0, v = 0, θ = 1
r → ∞ : u = 0, θ = 0

(19)

where
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A1 = (1− φ)2.5
(

1− φ + φ
ρs
ρ f

)
, A2 = (1− φ)2.5

1 +
3
(

σs
σf
−1
)

φ(
σs
σf

+1
)
−
(

σs
σf
−1
)

φ

 ,

A3 = (1− φ)2.5, A4 =
κ f

κm f

(
1− φ + φ

(ρCp)s
(ρCp) f

)
, A5 =

κ f
κm f

(20)

Here, β =
µ0KH2

0 (Tc−Tw)R2
ρ f

µ2
f

is the ferromagnetic interaction parameter, Mn =
σf µ2

0 H2
0 R2

µ f

is the magnetic field parameter, Nr = 16σ1T3
c

3χκ f
, is the thermal radiation parameter,

Pr =
(µCp) f

κ f
, is the Prandtl number, ε = Tc

Tc−Tw
is the dimensionless Curie temperature and

Ec =
µ3

f

ρ2
f κ f R2

(Tc−Tw)
is the Eckert number.

If the stream function ψ formulation is adopted, i.e., define the velocity components as

u =
1
r

∂ψ

∂r
, v = −1

r
∂ψ

∂x

Equation (16) is automatically satisfied and Equations (17) and (18) take the form:

A1

[
r2 ∂2ψ

∂t∂r + r ∂ψ
∂r

∂2ψ
∂x∂r +

∂ψ
∂x

(
∂ψ
∂r − r ∂2ψ

∂r2

)]
= r2 ∂3ψ

∂r3 − r ∂2ψ

∂r2 + ∂ψ
∂r

−A2MnH2r2 ∂ψ
∂r + A3β Hr3θ ∂H

∂x

(21)

A4Pr
(

r
∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcH(ε− θ)

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
= (1 + NrA5) r

∂2θ

∂r2 +
∂θ

∂r
, (22)

along with the boundary conditions:

r = 1 : ∂ψ
∂r = 0, ∂ψ

∂x = 0, θ = 1
r → ∞ : ∂ψ

∂r = 0, θ = 0
(23)

3. The Group of Transformations

To identify all symmetries of a given differential equation (DE), group method analysis
is the only rigorous mathematical method and for that no prior knowledge or exceptional
assumptions of the given boundary layer equations under inquisition is needed. In physical
standpoint, the boundary layer equations are very interesting due to their potency to admit
a huge number of analytic solutions, i.e., invariant solutions. Here, invariant solutions mean
the reduction of PDEs to simpler ODEs. Basically, the researchers in the fluid mechanics
field, try to obtain similarity solutions by proposing a general similarity transformation
with unknown parameters into the DE and as a result get an algebraic system. Then, the
solution of this system, if it exists, determines the values of the unknown parameters. From
this point of view, we believe that it is better to attack any problem of similarity solutions
from the outset; that is, to find out the full list of symmetries of the problem and then
study which of them are appropriate to provide group-invariant solutions more specifically
similarity solutions. The two-parameter method that we applied in this model provided a
group of solutions which is one of the major advantages of this group method. However,
few limitations of this method also hold, such as the large number of arbitrary coefficients
appearing in the obtained ODEs. It is quite difficult to determine numerical solutions to
the problem.

In this section, a group theoretical method is applied to the system of PDEs (21)–(22)
along with the boundary conditions (23). More precisely, a two-parameter transformation
group is applied, which reduces the number of independent variables by one. Consequently,
the set of PDEs (21)–(22) is converted into a system of ODEs.
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3.1. The Group Systematic Formulation

The procedure is initiated with a class G of two-parameter (a1, a2) transformation
group of the form

G : S = CS(a1, a2) S + KS(a1, a2), (24)

where CS and KS are real values and at least differentiable in each argument (a1, a2)
and the symbol S stands for x, r, t, ψ, θ, H. Relation (24) may be further expressed in the
following way:

G :


S :


x = Cx(a1, a2) x + Kx(a1, a2)
r = Cr(a1, a2) r + Kr(a1, a2)
t = Ct(a1, a2) t + Kt(a1, a2)

ψ = Cψ(a1, a2) ψ + Kψ(a1, a2)
θ = Cθ(a1, a2) θ + Kθ(a1, a2)
H = CH(a1, a2) H + KH(a1, a2)

, (25)

which possesses complete sets of absolute invariants η (x, r, t) and ξi (x, r, t, ψ, θ, H),
i = 1, 2, 3 where ξi are the three absolute invariants corresponding to ψ, θ, H. If η is
the absolute invariant of the independent variables, then ξi = Fi(η), i = 1, 2, 3. For more
details one may refer to [52] or [53].

3.2. The Invariance Analysis

The transformation for the derivatives appearing in Equations (21) to (23), are directly
gained from G via chain-rule operations and are

∂S
∂i

=
CS

Ci
∂S
∂i

,
∂2S
∂i2

=
CS(
Ci
)2

∂2S
∂i2

,
∂3S
∂i3

=
CS(
Ci
)3

∂3S
∂i3

,
∂2S
∂i∂j

=
CS

CiCj
∂2S
∂i∂j

, (26)

where S = ψ, θ, H and i, j = x, r, t.
Equation (21) is said to be invariantly transformed under (25) and (26), whenever

A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
− ∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r

−A3βHr3θ
∂H
∂x

= I1(a1, a2)

A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
−∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r
− A3βHr3θ

∂H
∂x

 (27)

for some function I1(a1, a2) which may be constant. The terms defined in (25) together with the
corresponding derivatives from (26) are substituted into the left side of Equation (27), yielding

A1

[
CψCr

Ct r2 ∂2ψ

∂t∂r
+

(
Cψ
)2

CxCr r
∂ψ

∂r
∂2ψ

∂x∂r
+

(
Cψ
)2

CxCr
∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)]
− Cψ

Cr
∂ψ

∂r

+
Cψ

Cr r
∂2ψ

∂r2 −
Cψ

Cr r2 ∂3ψ

∂r3 + A2CψCr
(

CH
)2

MnH2r2 ∂ψ

∂r
− A3

Cθ
(
CH)2

(Cr)3

Cx

βHr3θ
∂H
∂x

+ R1(a1, a2) = I1(a1, a2)

[
A1

{
r2 ∂2ψ

∂t∂r
+ r

∂ψ

∂r
∂2ψ

∂x∂r
+

∂ψ

∂x

(
∂ψ

∂r
− r

∂2ψ

∂r2

)}
−∂ψ

∂r
+ r

∂2ψ

∂r2 − r2 ∂3ψ

∂r3 + A2MnH2r2 ∂ψ

∂r
− A3βHr3θ

∂H
∂x

]
(28)

where
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R1(a1, a2) = A1

[{
2CrKrr + (Kr)2

} Cψ

CtCr
∂2ψ

∂t∂r
+

(
Cψ
)2

Cx(Cr)2 Kr ∂ψ

∂r
∂2ψ

∂x∂r
−
(
Cψ
)2

Cx(Cr)2 Kr ∂ψ

∂x
∂2ψ

∂r2

]
+

Cψ

(Cr)2

Kr ∂2ψ

∂r2 −
{

2CrKrr + (Kr)2
} Cψ

(Cr)3
∂3ψ

∂r3 + A2Mn

[{
2CrKrr + (Kr)2

}Cψ
(
CH)2

Cr H2 ∂ψ

∂r
+

{
2CHKH H +

(
KH
)2
}{

CψCrr2 ∂ψ

∂r
+
{

2CrKrr + (Kr)2
}Cψ

Cr
∂ψ

∂r

}]
− (Cr)3CθCH

Cx KH A3βr3θ
∂H
∂x

−
(Cr)3(CH)2

Cx Kθ A3Hβr3 ∂H
∂x
− (Cr)3CHKθ

Cx KH A3βr3 ∂H
∂x
−
[
3(Crr)2Kr + 3Crr(Kr)2 + (Kr)3

]
[(

CH)2Cθ

Cx A3βHθ
∂H
∂x

+
CθCH

Cx KH A3βθ
∂H
∂x

+

(
CH)2Kθ

Cx A3βH
∂H
∂x

+
CHKθ

Cx KH A3β
∂H
∂x

]
.

(29)

From the form of Equation (28), it is obvious that (28) is invariantly transformed whenever

I1(a1, a2) =
CψCr

Ct =

(
Cψ
)2

CxCr =
Cψ

Cr = CψCr
(

CH
)2

=
Cθ
(
CH)2

(Cr)3

Cx , (30)

and R1(a1, a2) ≡ 0, which implies

Kr ≡ KH ≡ Kθ ≡ 0. (31)

Similarly, Equation (22) is invariantly transformed under (25) and (26), by assuming
that for some function I2(a1, a2), which may be constant the following holds:

A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)

−A5βEcHθ

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−
{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}

= I2(a1, a2)


A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−A5βEcHθ

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−
{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}


(32)

Substitution of (24)–(26) into the left side of Equation (32) gives

A4 Pr
[

CrCθ

Ct r
∂θ

∂t
+

CψCθ

CrCx

(
∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)]
+

Cψ
(
CH)2

CrCx A5βEcεH
(

∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−

CψCθ
(
CH)2

CrCx A5βEcHθ

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
− Cθ

Cr

{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}
+ R2(a1, a2)

= I2(a1, a2)


A4 Pr

(
r

∂θ

∂t
+

∂ψ

∂r
∂θ

∂x
− ∂ψ

∂x
∂θ

∂r

)
+ A5βEcεH

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−A5βEcHθ

(
∂ψ

∂r
∂H
∂x
− ∂ψ

∂x
∂H
∂r

)
−
{
(1 + NrA5)r

∂2θ

∂r2 +
∂θ

∂r

}
,

(33)

where
R2(a1, a2) = A4Pr Cθ Kr

Ct
∂θ
∂t +

CψCHKH

CrCx A5βEcε
(

∂ψ
∂r

∂H
∂x −

∂ψ
∂x

∂H
∂r

)
−A5βEc

[
CψKθ(CH)

2

CrCx H + CψCθCHKθ

CxCr θ + CψCHKHKθ

CxCr

]
(

∂ψ
∂r

∂H
∂x −

∂ψ
∂x

∂H
∂r

)
− Cθ

(Cr)2 Kr(1 + NrA5)
∂2θ
∂r2 .

(34)
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From (33), it is obvious that it is invariantly transformed whenever

I2(a1, a2) =
CθCr

Ct =
CθCψ

CxCr =
Cθ

Cr =
Cψ
(
CH)2

CxCr =
CθCψ

(
CH)2

CxCr , (35)

and R2(a1, a2) ≡ 0, which implies

Kr ≡ KH ≡ Kθ ≡ 0 . (36)

Finally, the boundary conditions (23) must also be invariant under the same transfor-
mations, which yields

Cr = 1 and Cθ = 1. (37)

Combining Equations (30) and (35) and taking into account (31), (36), and (37), it was
found that:

Ct = 1 and Cx = CH = Cψ = 1 . (38)

Hence, the two-parameter group G, which invariantly transforms Equations (21) and
(22), and the boundary condition (23) takes the form

G :


S :


x = x + Kx(a1, a2)
r = r
t = t + Kt(a1, a2)

ψ = ψ + Kψ(a1, a2)
θ = θ

H = H

. (39)

3.3. The Complete Set of Absolute Invariants

The basic tool of this technique is the application of a general theorem from group
theory, so that the problem under consideration is described by ODEs (similarity representa-
tion) in an independent variable (similarity variable). Herein, the complete sets of absolute
invariants include two types of absolute invariants, namely (i) the absolute invariants of
independent variables (x, r, t), which are η = η(x, r, t), and (ii) the absolute invariants of
dependent variables (ψ, θ, H). This general theorem for the case of a two-parameter group
(e.g., [54,55]), states that a function η = η(x, r, t) is an absolute invariant of a two-parameter
group of the form

S : [ x = Cx(a1, a2) x + Kx(a1, a2) ,
r = Cr(a1, a2) r + Kr(a1, a2),
t = Ct(a1, a2) t + Kt(a1, a2)

]
.

(40)

If and only if η satisfies the first order linear PDEs:

(α1x + α2)
∂η
∂x + (α3r + α4)

∂η
∂r + (α5t + α6)

∂η
∂t = 0,

(δ1x + δ2)
∂η
∂x + (δ3r + δ4)

∂η
∂r + (δ5t + δ6)

∂η
∂t = 0,

(41)

where

α1 =
∂Cx

∂a1

(
a0

1, a0
2

)
, α2 =

∂Kx

∂a1

(
a0

1, a0
2

)
, α3 =

∂Cr

∂a1

(
a0

1, a0
2

)
, α4 =

∂Kr

∂a1

(
a0

1, a0
2

)
,

α5 =
∂Ct

∂a1

(
a0

1, a0
2

)
, α6 =

∂Kt

∂a1

(
a0

1, a0
2

)
, δ1 =

∂Cx

∂a2

(
a0

1, a0
2

)
, δ2 =

∂Kx

∂a2

(
a0

1, a0
2

)
,

δ3 =
∂Cr

∂a2

(
a0

1, a0
2

)
, δ4 =

∂Kr

∂a2

(
a0

1, a0
2

)
, δ5 =

∂Ct

∂a2

(
a0

1, a0
2

)
, δ6 =

∂Kt

∂a2

(
a0

1, a0
2

)
.

and
(
a0

1, a0
2
)

denote the values of a1 and a2, which yield the identity: x = x, r = r, t = t
according to [55]. By definition, there is one functionally independent solution to (41).
Additionally, if η, is a non-constant solution to (41) for a group S, then every other solution
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to (41), for S, is given in the form J(η) where J is a differentiable function. From (41) and
the definitions of the constants αi, δi, it can be seen that distinctions between group S are
reflected by the α′s and δ′s. This means that, in general, any particular group S owns a
characteristic set of α′s and δ′s and, consequently, a characteristic absolute invariant η is
yielded by (41).

Since Kr ≡ 0, it is α4 = δ4 = 0 and Equation (41) becomes:

(α1x + α2)
∂η
∂x + α3r ∂η

∂r + (α5t + α6)
∂η
∂t = 0,

(δ1x + δ2)
∂η
∂x + δ3r ∂η

∂r + (δ5t + δ6)
∂η
∂t = 0.

(42)

4. Derivation of Distinct Complete Sets

In this section, the distinct complete sets of invariants will be derived.
Invariants for the independent variables
As already mentioned in the previous section, system (42) has one functionally inde-

pendent solution, which means that the rank of the coefficient matrix for
{

∂η
∂x , ∂η

∂r , ∂η
∂t

}
must

be two. This is true whenever at least one of the following conditions is satisfied:

λ31x + λ32 6= 0 or λ35t + λ36 6= 0 or λ15xt + λ16x + λ25t + λ26 6= 0, (43)

where
λij = αi δj − αj δi , i, j = 1, 2, 3, 4, 5, 6

and it should be mentioned that from the definitions of α′s, δ′s and λ′s, as well as from the
transformations (39), it can be found that:

λ31 = λ35 = λ15 = 0. (44)

For convenience, (42) can be rewritten in terms of (43) in the form:

(λ31x + λ32)
∂η
∂x + (λ35t + λ36)

∂η
∂t = 0,

(λ31x + λ32) r ∂η
∂r − (λ15xt + λ16x + λ25t + λ26)

∂η
∂t = 0.

(45)

According to conditions (43), three main cases arise which will be studied in the
following:

4.1. First Case: None of the Coefficients in (45) Vanish Identically

Assume that

λ31x + λ32 6= 0 and λ35t + λ36 6= 0 and λ15xt + λ16x + λ25t + λ26 6= 0,

or taking into consideration (44) that

λ32 6= 0 and λ36 6= 0 and λ16x + λ25t + λ26 6= 0. (46)

In this case, (45) becomes

λ32
∂η
∂x + λ36

∂η
∂t = 0

λ32 r ∂η
∂r − (λ16x + λ25t + λ26)

∂η
∂t = 0.

(47)

According to a standard technique for linear PDEs, the first equation of (47) has the
general solution

η = f (r, ξ(x, t)), (48)

where f is an arbitrary function and ξ is a function such that

ξ(x, t) = λ36x− λ32t = c, (49)
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where c constant. Substitution of (48) to the second equation of (47) gives

r
∂η

∂r
− λ16x + λ25t + λ26

λ32

∂ξ

∂t
∂ f
∂ξ

= 0. (50)

Since ξ is independent of r, the coefficient of ∂ f
∂ξ in (50) must also be independent of r, i.e.,

λ16x + λ25t + λ26

λ32

∂ξ

∂t
= g(ξ),

which, after taking (49) into consideration, becomes

g(ξ) = −(λ16x + λ25t + λ26) (51)

However, since g is a function of only ξ, it is

∂g
∂x

∣∣∣∣
ξ

=
∂g
∂x

∣∣∣∣
t
+

∂g
∂t

∣∣∣∣
x

∂t
∂x

∣∣∣∣
ξ

≡ 0,

which, after using (49) and (51), gives

−λ16 = −λ16 − λ25
λ36

λ36
= 0⇒

{
λ16 = 0
λ16 + λ25

λ36
λ36

= 0
⇒
{

λ16 = 0
λ25 = 0

,

after taking (46) into consideration. However, due to the definitions of α′s, δ′s and λ′s, as
well as from the transformations (39), it is α1 = α3 and δ1 = δ3. Thus,

λ16 = 0⇒ α1δ6 − α6δ1 = 0⇒ α3δ6 − α6δ3 = 0⇒ λ36 = 0,

which contradicts the second assumption of (46). Consequently, this first case is not
acceptable.

4.2. Second Case: Two of the Coefficients in (45) Vanish Identically

Sub-case 2-I: Assume that

λ31x + λ32 ≡ 0, λ35t + λ36 ≡ 0 and λ15xt + λ16x + λ25t + λ26 6= 0.

In this case, (45) reduces to the following one equation

(λ15xt + λ16x + λ25t + λ26)
∂η

∂t
= 0,

since the first equation of (45) is identically satisfied, from which it is deduced that

∂η

∂t
= 0. (52)

By substituting (52) into (42) and after some manipulations, the following equations
are obtained:

(λ16x + λ26)
∂η
∂x + λ36r ∂η

∂r = 0
(λ15xt + λ25t) ∂η

∂x + λ35rt ∂η
∂r = 0

}
,

which in turn yields the equation

(λ15xt + λ16x + λ25t + λ26)
∂η

∂x
+ (λ35t + λ36)r

∂η

∂r
= 0⇒ (53)

⇒ ∂η

∂x
= 0. (54)
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From (52) and (53), it is obvious that η is an arbitrary function of r alone, which for
reasons of simplicity can be assumed to have the form

η = r (55)

Sub-case 2-II: Assume that

λ31x + λ32 6= 0, λ35t + λ36 ≡ 0 and λ15xt + λ16x + λ25t + λ26 ≡ 0.

In this case, (45) becomes

(λ31x + λ32)
∂η
∂x = 0

(λ31x + λ32) r ∂η
∂r = 0

}
⇒

∂η
∂x = 0
∂η
∂r = 0

}
,

from which it is deduced that η is not a function of r, which is unacceptable from the point
of view of the boundary conditions.

Sub-case 2-III: Assume that

λ31x + λ32 ≡ 0, λ35t + λ36 6= 0 and λ15xt + λ16x + λ25t + λ26 ≡ 0 (56)

In this case, (45) reduces to the following one equation

(λ35t + λ36)
∂η

∂t
= 0,

since the first equation of (45) is identically satisfied, from which it is deduced that

∂η

∂t
= 0.

Following the same procedure as in sub-case 2-I, Equation (53) appears, which due to
(56) now gives

∂η

∂r
= 0

Thus, η is not a function of r, which is unacceptable from the point of view of the
boundary conditions.

4.3. Third Case: Only One of the Coefficients in (45) Vanishes Identically

Sub-case 3-I: Assume that

λ31x + λ32 = 0 , λ35t + λ36 6= 0 , λ15xt + λ16x + λ25t + λ26 6= 0.

In this case, (45) reduces to the following one equation

∂η

∂t
= 0,

which means that η = η(x, r) and (42) is simplified to

(α1x + α2)
∂η
∂x + α3r ∂η

∂r = 0
(δ1x + δ2)

∂η
∂x + δ3r ∂η

∂r = 0

}
,

a solution of which is found to be

η = r (Ax + B)n, (57)

where n = − α3
α1

= − δ3
δ1

, A = α1 = δ1, B = α2 = δ2.
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Sub-case 3-II: Assume that

λ31x + λ32 6= 0 , λ35t + λ36 = 0 , λ15xt + λ16x + λ25t + λ26 6= 0.

In this case, the first equation of (45) reduces to the following equation

(λ31x + λ32)
∂η

∂x
= 0⇒ ∂η

∂x
= 0,

which means that η = η(r, t) and (42) is simplified to

α3r ∂η
∂r + (α5t + α6)

∂η
∂t = 0,

δ3r ∂η
∂r + (δ5t + δ6)

∂η
∂t = 0,

a solution of which is found to be

η = r (Bt + A)n, (58)

where n = α3
α5

= δ3
δ5

, A = δ6 = α6, B = δ5 = α5.
Sub-case 3-III: Assume that

λ31x + λ32 6= 0 , λ35t + λ36 6= 0 , λ15xt + λ16x + λ25t + λ26 = 0.

In this case, the second equation of (45) reduces to the following equation

(λ31x + λ32) r
∂η

∂r
= 0⇒ ∂η

∂r
= 0,

from which it is deduced that η is not a function of r, which is unacceptable from the point
of view of the boundary conditions.

Invariants for the dependent variables
The next step is to obtain the absolute invariants of the dependent variables ψ, H and

θ. From (37), it is derived that θ is itself an absolute invariant. Thus,

X1(x, r, t ; θ) = θ(η).

A function X2(x, t ; ψ) is said to be an absolute invariant of a two-parameter group
only when it satisfies the following first order PDEs:

(α1x + α2)
∂X2
∂x + (α3t + α4)

∂X2
∂t + (α5ψ + α6)

∂X2
∂ψ = 0

(δ1x + δ2)
∂X2
∂x + (δ3t + δ4)

∂X2
∂t + (δ5ψ + δ6)

∂X2
∂ψ = 0,

a solution of which is

X2(x, t ; ψ) = ϕ1

(
ψ

Γ1(x, t)

)
= F(η). (59)

In a similar way, the following is found

X3(x, t ; H) = ϕ2

(
H

Γ2(x, t)

)
= E(η) (60)

In (59)–(60), the functions Γ1(x, t) and Γ2(x, t) are to be determined so that eventually
the PDEs (21)–(22) are reduced to ODEs. Without loss of generality, the functions φ1 and φ2
in (59)–(60), can be selected as the identity functions. Therefore, the functions ψ(x, r , t) and
H(x, t) can be rewritten in terms of F(η) and E(η) in the following way:

ψ(x, r , t) = Γ1(x, t)F(η) , H(x, t ) = Γ2(x, t)E(η). (61)
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Since Γ2(x, t) and H(x, t) are independent of r and η depends on r, E must be a
constant, say E0. Thus

ψ(x, r , t) = Γ1(x, t)F(η) , H(x, t ) = E0Γ2(x, t). (62)

5. The Reduction to Ordinary Differential Equations

Assume that η = rπ(x, t). Using (62), the PDEs (21)–(22) and the boundary conditions
(23) are reduced to the following system of ODEs:

r2F′′′ − C1rF′′ + C2F′ − C3 A2r2MnF′ + C4 A3β r3θ
−A1

[
C5r2F′ + C6r3F′′ + C7r2F′ + 2C8rF′2 −

(
rFF′′ − rF′2

)
C9 + C10FF′

]
= 0

(63)

(1 + NrA5) rθ′′ + C1θ′ − A4Pr
[
C6r2θ′ − C9Fθ′

]
− C11 A5β Ec (ε− θ) F′ = 0, (64)

with corresponding boundary conditions

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(65)

where

C1 = 1
π , C2 = 1

π2 , C3 =
Γ2

2E2
0

π2 , C4 =
Γ2E2

0
Γ1π3

∂Γ2
∂x , C5 = 1

π3
∂π
∂t , C6 = 1

π2
∂π
∂t ,

C7 = 1
Γ1π2

∂Γ1
∂t , C8 = Γ1

π2
∂π
∂x , C9 = 1

π
∂Γ1
∂x , C10 = 1

π2
∂Γ1
∂x , C11 =

Γ1Γ2E2
0

π
∂Γ2
∂x .

(66)

The C′s defined in (66) are constants to be determined for every individual case
corresponding to every set of absolute invariants. For this, the following three cases
are considered:
Case (a)

Consider η = rπ(x, t) as in (55), i.e., π(x, t) = 1 and Γ1 = Γ1(x),Γ2 = Γ2(x). In this
case and by further assuming C3 to be unity, (66) gives

C1 = C2 = C3 = 1, C9 = C10, C5 = C6 = C7 = C8 = 0, C4 = C11
Γ2

1
,

Γ1 = C9x + K1 = C10x + K2, Γ2 = K3(C9x + K1)
C11/C9

= K3(C10x + K2)
C11/C10 ,

where K1, K2, K3 are constants of integration. Substitution of the aforementioned values
into (63)–(64), gives:

r2F′′′ − rF′′ + F′ − A2r2MnF′ − A1

((
rF′2 − rFF′′

)
C9 + C9FF′

)
+ C4 A3β r3θ = 0, (67)

(1 + NrA5) rθ′′ + θ′ + A4C9PrFθ′ − C11 A5β Ec (ε− θ) F′ = 0. (68)

Equations (67)–(68) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(69)

In this case, the functions ψ and H given by (62) take the form

ψ = (C9x + K1)F(η) = (C10x + K2)F(η),

H = K3(C9x + K1)
C11/C9 E0 = K3(C10x + K2)

C11/C10 E0,
(70)

and the corresponding velocity components are:

u = 1
r

∂ψ
∂r = (C9x + K1)

π
r F′ = (C10x + K2)

π
r F′ ,

v = − 1
r

∂ψ
∂x = −C9

r F = −C10
r F.

(71)
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Case (b)
Consider η = rπ(x, t) as in (57), i.e., π(x, t) = (Ax + B)n and Γ1 = Γ1(x),Γ2 = Γ2(x).

In this case and by further assuming C3 to be unity, (66) gives

C1 = 1
(Ax+B)n , C2 = C2

1 , C3 = 1, C4 = An
K (Ax + B)−2n−2, C5 = C6 = C7 = 0, C8 = AKn,

C9 = AK(n + 1), C10 = AK(n+1)
(Ax+B)n , C11 = AKn(Ax + B)2n,

where K is a constant of integration. Substitution of the aforementioned values into
(63)–(64), gives:

r2F′′′ − C1rF′′ + C2
1 F′ − A2r2MnF′ + C4 A3β r3θ

−A1
[
2C8rF′2 −

(
rFF′′ − rF′2

)
C9 + C10FF′

]
= 0

(72)

(1 + NrA5) rθ′′ + C1θ′ + A4C9PrFθ′ − C11 A5β Ec (ε− θ) F′ = 0. (73)

Equations (72)–(73) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(74)

In this case, the functions ψ and H given by (62) take the form

ψ = K(Ax + B)n+1F,
H = (Ax + B)n,

(75)

and the corresponding velocity components are:

u = 1
r

∂ψ
∂r = K

r (Ax + B)2n+1F′ ,
v = − 1

r
∂ψ
∂x = −Γ1 An(Ax + B)n−1F′ − K

r A(n + 1)(Ax + B)nF.
(76)

Case (c)
Consider η = rπ(x, t) as in (58), i.e., where π(x, t) = (Bt + A)n for n = − 1

2 and
Γ1 = Γ1(x, t),Γ2 = Γ2(x, t). In this case and by further assuming C3 to be unity, (66) gives

C1 =
√

Bt + A, C2 = Bt + A, C3 = 1, C4 = C8 = C11 = 0, C5 = − B
2 , C6 = − B

2C1
,

C7 = − B
2 , C10 = C1C9.

Substitution of the aforementioned values into (63)–(64), gives:

r2F′′′ − C1rF′′ + C2F′ − A2r2MnF′ − A1

[
− B

2 r2F′ − B
2 η r2F′′ − C7r2F′

+C9C1FF′ − C9
(
rFF′′ − rF′2

)]
= 0,

(77)

(1 + NrA5) rθ′′ + C1θ′ + A4Pr
[

B
2

η rθ′ − C9Fθ′
]
= 0. (78)

Equations (77)–(78) are accompanied of course by the boundary conditions (65), i.e.,:

r = 1 : F = 0, F′ = 0, θ = 1,
r → ∞ : F′ = 0, θ = 0.

(79)

In this case, the functions ψ and H given by (62) take the form

ψ = (x+K1)√
Bt+A

C9F,

H = 1√
Bt+A

,
(80)

where K1 is a constant of integration, and the corresponding velocity components are:
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u = 1
r

∂ψ
∂r = (x+K1)

(Bt+A) r C9F′ ,

v = − 1
r

∂ψ
∂x = − C9

r
√

(Bt+A)
.

(81)

It can be observed, that cases (a) and (b) the impacts of the ferromagnetic number and
the magnetic field parameter in velocity and temperature profiles are significant compared
to case (c), since, in case (c), the FHD parameter is absent. For these reasons, only cases (a)
and (b) are numerically solved.

6. The Numerical Procedure

To numerically solve the fluid mechanics problem described by equations such as
(63)–(65), several computational techniques have been proposed by many researchers.
In this paper, an efficient numerical technique is employed based on the common finite
differences method with central differencing, a tridiagonal matrix manipulation and an
iterative procedure introduced in [56]. In this section, this technique will be described
for case (b). First of all, the arbitrary coefficient constants in (72)–(73) are for reasons of
simplicity, all assumed to be equal to one. Therefore, (72)–(73) are rewritten as:

r2F′′′ − rF′′ + F′ − A2r2MnF′ + A3β r3θ − A1

[
2rF′2 −

(
rFF′′ − rF′2

)
+ FF′

]
= 0, (82)

(1 + NrA5) rθ′′ + θ′ + A4PrFθ′ − A5β Ec (ε− θ) F′ = 0. (83)

Following [49], Equation (82) is written in the form

r2F′′′ + (A1rF− r)F′′ +
(

1− A2r2M− 2A1rF′ − A1rF′ − A1F
)

F′ = −A3β r3θ, (84)

or

r2(F′)′′ + (A1rF− r)
(

F′
)′
+
(

1− A2r2Mn− 2A1rF′ − A1rF′ − A1F
)

F′ = −A3β r3θ, (85)

and (83) in the form

(1 + NrA5) rθ′ ′ + (1 + A4PrF)θ′ + A5β EcF′θ = A5β Ec ε F′. (86)

Both (85) and (86) are of the general form

Pg′′ (η) + Qg′(η) + Rg(η) = S (87)

with

g = F′( η ), P = r2, Q = A1rF− r, R = 1− A2r2Mn− 2A1rF′ − A1rF′ − A1F, S = −A3β r3θ,

or Equation (85) and

g = θ(η), P = (1 + NrA5) r, Q = 1 + A4PrF, R = A5β EcF′, S = A5β Ec ε F′

for Equation (86).
Equations (85)–(86) are solved by a common finite differences method based on

central differencing and tridiagonal matrix manipulation. Before starting the solution
procedure, it is necessary to assume an initial guess for F′(η) and θ(η) between η = 0 and
η = η∞ (η → ∞) which satisfies the boundary conditions (74). Thus, it is assumed that

F(η) =
η

η∞
, F′(η) =

η

η∞
, θ(η) = 1 − η

η∞
,

Therefore, the F(η) distribution is obtained by integrating F′(η). The function θ(η)
is retained while a new estimation for F′(η) , say ( F′new ), is determined by solving



Mathematics 2022, 10, 3520 19 of 34

(85) using the same technique. Thus, the F(η) profile is updated by integrating the new
F′(η). These new distributions F(η) and F′(η) are then used for new inputs, etc. In
this way, Equation (85) and, consequently, (72) is iteratively solved until the required
convergence up to a small quantity ε1 is attained. The converged profile of F(η) is used
to solve (86), using the same finite differences method, but without iteration, producing a
new approximation for θ(η). In this way, the temperature profile θ(η) is obtained until the
convergence ε1 is attained.

This numerical scheme is continued until the trial convergence of the solution is
performed. The applied step size used in this paper for case (b) is h = ∆η = 0.01 for
ηmin = 0 and ηmax = 7. The solution is convergent with an approximation to ε1 = 10 −3.
For case (a), the same step size is considered, i.e., h = ∆η = 0.01, but for ηmin = 0,
ηmax = 12 and ε1 = 10 −3. The arbitrary constants C4, C9, C10 appearing in case (a) are
also considered equal to one.

7. Results and Discussion

Before proceeding to the application of the above-mentioned method for the derivation
of the numerical results, it is essential to check the accuracy of the applied numerical
algorithm. For that, calculations were performed for partial cases of the present problem
in order to perform comparisons with previously published results. For demonstration
purposes, a graphical comparison is given in Figures 2 and 3 concerning results comparison
obtained for the present case (b) with that obtained in [37] for the velocity and temperature
distributions, respectively. From the relative figures as well as from all other comparisons
performed, we found that the results are accurate and ensure the acceptability of the
proposed numerical algorithm.
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In the following, the numerical results in conjunction with the appearing parameters
are discussed with their respective outcomes for the velocity, temperature profiles as well
as the skin friction coefficient and the rate of heat transfer for both cases (a) and (b). Before
moving on to the numerical procedure, we need to ensure the allocation of some realistic
values of the respective parameter to ensure that the obtained results of the proposed model
will be as realistic as possible. The consideration of realistic case scenarios has been made
for similar physical BFD problems and thus the following values of the parameters are
utilized for case (a) and case (b) as follows:

(i) The ferromagnetic interaction parameter β = 0 − 10 as in [12,13,39,40,49];
(ii) The magnetic field parameter Mn = 1 , 3 , 5 as in [13,40,49,57];
(iii) The Prandtl number Pr = 21 , 23 , 25 as in [13,40,49];
(iv) The radiation parameter Nr = 0.1 , 0.2 , 0.5 , 1, 1.5, 3 as in [57];
(v) The Eckert number Ec = 0.001 , 0.002, 0.003, 0.01 , 1 as in [58];
(vi) The volume fraction φ = 0 , 0.05 , 0.1 , 0.2 as in [49].

Moreover, human body temperature is considered as Tw = 37 ◦C [13,41], and body
Curie temperature as Tc = 41 ◦C. For these values, the dimensionless temperature is turned
out to be ε = Tc

Tc−Tw
= 314

314−310 = 78.5 [39,40]. Hence, the required values of the Prandtl

number for human blood is Pr =
(µCp) f

κ f
= 3.2×10−3×3.9×103

0.5 ≈ 25.
For case (a), the graphical results are obtained for pure blood and blood-Fe3O4, where

magnetic particles are assumed of cylindrical shape. In case (b), the effect of magnetic
particle shape is compared for blood-Fe3O4 flow on a cylindrical surface.

Figures 4–7 present the typical profiles for the velocity and temperature for numerous
values of the ferromagnetic interaction parameter. It is alluded that when the values of
the ferromagnetic interaction parameter are increased, the velocity profile is reduced and,
consequently, the temperature profile is also decreased. This is due to the presence of the
Kelvin force which is also known as resistive force, and it appears because of the fluid
polarization at the inflow region. Figures 4 and 5 show the behaviors of pure blood and
blood-Fe3O4 and for that particular case, the magnetic particles are assumed as cylindrical.
It is seen from those figures that when the magnetic particles are mixed with blood, blood
velocity and temperature is slightly increased throughout to the boundary layer compared
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to the case when pure blood is considered. The more profound reduction in the velocity
with the increment of the applied magnetic field strength is depicted at Figure 6 for the
case b. This reduction in the velocity is immense for η—greater than approximately 1.5.
Analogous suppression of the temperature distributions with the increment of the magnetic
field strength, i.e., as β increases, are also observed at Figure 7. It is also noticed from the
aforementioned figures (see Figure 7) that if the particle shape is cylindrical, then the blood
temperature is more significantly increased than when the spherical shape is adopted. It is
noted that in these figures the above behavior concerns the effect of increasing polarization
for a given electrical conductivity effect, i.e., steady Mn.
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Figure 7. (Case b): Variations of θ for β = 0, 5, 10 against η.

The impact of the magnetic field parameter on the velocity and temperature distribu-
tions, for a steady ferromagnetic parameter β, are displayed in Figures 8 and 9. Figure 8
shows that blood velocity is decreased up to approximately η ≈ 1.9 but then the fluid
velocity is gradually increased. This is due to the application of the magnetic field which
results to the arising of the Lorentz force, acting in the opposite direction to the fluid flow.
As a result, for a given polarization effect, i.e., β = 10, when the values of the magnetic
field parameter are increased, the temperature distribution is enhanced and that is clearly
observed in Figure 9. A similar type of magnetic particle shape impact is also observed with
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the variation of the magnetic field parameter and the ferromagnetic number. Additionally,
from Figure 10, we found that the temperature of blood-Fe3O4 is much better enhanced
after adding magnetic particles rather than that occurring for pure blood.
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Figure 9. (Case b): Variations of θ for Mn = 1, 3, 5 against η.
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Figure 10. (Case a): Variations of θ for Mn = 1, 3, 5 against η.

Figures 11 and 12 present the effects of the magnetic particle volume fraction on
the velocity and temperature profiles, respectively. It is evident that blood temperature
is improved by the imposition of the magnetic particle volume fraction on blood (see
Figure 12). It is also noticeable that it is more effective when particles are cylindrical rather
than spherical. This is justified because of the large concentration of magnetic particles,
which yields a higher proportion of thermal conductivity. From velocity profiles (Figure 11)
two types of solutions are observed. Before the intersection of lines, it is observed that
blood-Fe3O4 flow is decreased but after the intersection reverse trend is noticed as values
of the magnetic particle volume fraction are enhanced. For both occasions, the magnetic
particle shape factor plays a vital role, and their comparison is easily seen by observation
of Figures 11 and 12.
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The influence of the radiation parameter for various values on the velocity and tem-

perature profiles, respectively, are plotted in Figures 13 and 14. From Figures 13 and 14, 

it is observed that, for a given magnetic field effect, i.e., Mn and β constants, as the values 

of the radiation parameter increase, both velocity and temperature distributions are in-

Figure 11. (Case b): Variations of F′ for φ = 0.05, 0.1, 0.2 against η.
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of the radiation parameter increase, both velocity and temperature distributions are in-

Figure 12. (Case b): Variations of θ for φ = 0.05, 0.1, 0.2 against η.

The influence of the radiation parameter for various values on the velocity and tem-
perature profiles, respectively, are plotted in Figures 13 and 14. From Figures 13 and 14, it
is observed that, for a given magnetic field effect, i.e., Mn and β constants, as the values of
the radiation parameter increase, both velocity and temperature distributions are increased.
This is happening because heat energy is released from the fluid in the flow regime when
the values of the radiation are gradually increased and as a result, the temperature of
blood-Fe3O4 is enhanced.
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Figure 13. (Case b): Variations of F′ for Nr = 0.5, 1, 1.5 against η.
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Figure 14. (Case b): Variations of θ for Nr = 0.5, 1, 1.5 against η.

Figures 15 and 16 represent the dimensionless velocity and temperature profiles,
respectively, for various values of the Eckert number. As the Eckert number increases,
both velocity and the temperature profiles are enhanced and especially the flow and heat
of blood-Fe3O4 are remarkably increased compared to pure blood. Major temperature of
fluid is attained for Ec = 0.001, which indicates that lower values of the Eckert number are
responsible for enhancing temperature in fluid regime due to the combined effects of the
magnetic field parameter and ferromagnetic number.
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Figure 15. (Case a): Variations of F′ for Ec = 0.001, 0.002, 0.003 against η.
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Figure 16. (Case a): Variations of θ for Ec = 0.001, 0.002, 0.003 against η.

Two quantities of great physical interest are the skin friction coefficient C f and the rate
of heat transfer Nu (local Nusselt number) which are defined by

C f =
2 τw

ρ f

(
u0x

L

)2 , (88)

and
Nu =

x qw

κ f (Tc − Tw)
(89)

where τw = µm f

(
∂u
∂r

)
r=R

is the wall shear stress parameter and qw = κm f

(
∂T
∂r

)
r=R

is
the wall heat transfer parameter. Therefore, relations (88) and (89) take the following form:

C f =
2ϑ f

2

(1− φ)2.5R
4( u0x

L
)2

(
∂u
∂r

)
r=1

, (90)

and

Nu = −
xκm f

κ f

(
∂θ

∂r

)
r=1

, (91)

where ϑ f
2 =

µ f υ f
ρ f

.
The skin friction coefficient and the local Nusselt number (the rate of heat transfer) are

presented in Figures 17–22 for various values of the ferromagnetic interaction parameter,
the magnetic particle volume fraction, the magnetic field parameter with regard to the
magnetic field parameter, respectively. From Figures 17 and 18, we found that both the skin
friction coefficient and the rate of heat transfer are increased for the ferromagnetic number
with respect to the magnetic field parameter. It is noticeable from these figures that the rate
of heat transfer of blood-Fe3O4 is significantly increased by approximately 33.2% compared
to that of pure blood, whereas the reverse trend is observed in the skin friction coefficient
and it is decreased by approximately 6.82% (see Figure 17). From Figure 19 to Figure 22,
it is evident that both the skin friction coefficient and the Nusselt number are enhanced
with the increment of the ferromagnetic interaction parameter, but the reverse trend is
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observed from Figures 21 and 22 as the particle volume fraction is increased. However, it
is also noticed that the skin friction coefficient of blood-Fe3O4 is effectively increased for
the cylindrical shape of magnetic particles comparable to that of spherical shape and it is
increased by approximately 1.09%, whereas the local Nusselt number of blood-Fe3O4 is
reduced 0.08% for cylindrical shape than that of spherical shape.
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Figure 18. (Case a): Values of the local Nusselt number for different values of   against Mn . 

Figure 17. (Case a): Values of the skin friction coefficient for different values of β against Mn.
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Figure 20. (Case b): Values of the local Nusselt number for different values of   against Mn . 

Figure 19. (Case b): Values of the skin friction coefficient for different values of β against Mn.
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Figure 20. (Case b): Values of the local Nusselt number for different values of β against Mn.

For the ferromagnetic interaction parameter, the velocity profile is reduced and, conse-
quently, the temperature profile is also decreased. This is due to the presence of the Kelvin
force which is also known as resistive force, and it appears because of the fluid polarization
at the inflow region (see Figures 4 and 5).
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Fluid (blood) velocity decreases for enhancing values of the magnetic field parameter
(Figure 8). This is due to the application of the magnetic field which results to the arising of
the Lorentz force, acting in the opposite direction to the fluid flow.

Due to the large concentration of magnetic particles, which yields a higher proportion
of thermal conductivity, blood temperature is enhanced (see Figure 12) and more significant
in case of cylindrical shape.



Mathematics 2022, 10, 3520 31 of 34

Additionally, from graphs 17–22, it is observed that the heat transfer rate of blood-
Fe3O4 is significantly increased by approximately 33.2% compared to that of pure blood,
whereas the coefficient of skin friction is reduced by approximately 6.82%. Moreover,
the coefficient of skin friction of blood-Fe3O4 is increased by approximately 1.09% when
particles are in cylindrical shape compared to that of spherical shape, whereas the rate of
heat transfer is enhanced 0.08% for spherical shape compared to that of cylindrical shape.

8. Concluding Remarks

In this paper, a BFD model is utilized to study blood flow with magnetic particles
under consideration of FHD and MHD principles over a two-dimensional cylinder. The full
form of a group theoretical method, namely a two-parameter group theory, is also applied.
The effect of thermal radiation is also taken into consideration. With the application of
the two-parameter group theory, the number of independent variables is reduced to one
variable and, consequently, the set of PDEs is converted into a set of ODEs subject to
corresponding boundary conditions. This resultant system of ODEs subject to analogous
boundary conditions is numerically solved by applying an efficient numerical technique
that consists of a common finite differences method with central differencing, tridiagonal
matrix manipulation, and finally an iterative procedure. The significant impact of the
variation of the appearing physical parameters is discussed and analogous graphical repre-
sentations are also demonstrated. Moreover, a comparison of results with others, previously
published, is performed to assure the accuracy of the applied numerical algorithm. From
the above analysis, we found that:

1. The blood velocity is appreciably reduced, and temperature is significantly improved
when magnetic particles are injected into a blood flow stream compared to that of
pure blood, where the ferromagnetic interaction parameter plays a significant role.

2. The particle shape plays a vital role in the flow and heat characteristics of blood-Fe3O4,
where a better temperature enhancement is observed for cylindrical shapes compared
to that of spherical shapes.

3. An increase in the values of the magnetic field parameter and/or the volume of the
fraction of the magnetic particles reduced the fluid velocity, whereas for the increment
of the ferromagnetic interaction parameter, the fluid velocity was enhanced.

4. The temperature distributions of the fluids increased for all cases of the variation
of parameters such as the ferromagnetic interaction parameter, the magnetic field
parameter, and the magnetic particle volume fraction.

5. Both velocity and temperature profiles are increased as the values of the radiation
parameter are enhanced, whereas the reverse trend is observed as the Eckert number
is increased.

6. Both the skin friction coefficient and the rate of heat transfer are escalated with
increasing values of the ferromagnetic interaction parameter. The heat transfer rate
of blood-Fe3O4 is enhanced by approximately 33.2% compared to that of pure blood
and the coefficient of skin friction is reduced by approximately 6.82%.

7. Both the coefficient of skin friction and the rate of heat transfer decrease with increas-
ing values of the particle volume fraction. It was found that the skin friction coefficient
is increased by approximately 1.09% for cylindrical shapes compared to that spherical
shapes, while an 0.08% reduction is noticed for cylindrical shapes in the heat transfer
rate compared to spherical shapes.
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List of Symbols

(u, v) Velocity components [m/s] H Magnetic field strength [A/m]
(x, r) Components of the cartesian system[m] I1, I2 Arbitrary function of two-parameter group
R Radius of the cylinder [m]
c Distance between the magnetic dipole and sheet [m] A,B,C Arbitrary constants
L Characteristic length [m] T Fluid temperature [K]
H0 Reference magnetic field strength Tw Temperature of the cylinder surface [K]
t Time [s] Tc Curie temperature [K]
Cp Specific heat at constant pressure [J Kg−1 K−1] Mn Magnetic field parameter
F′ Dimensionless velocity component K Pyromagnetic coefficient [K−1]
γ Strength of the magnetic field at the source position Ec Eckert number
Pr Prandtl number Nu Local Nusselt number
αi, δi Arbitrary constants C f Skin friction coefficient
qr Radiative heat flux B Magnetic induction
qw wall heat transfer parameter V Scalar potential of the magnetic dipole
φ Dimensionless magnetic particle volume fraction ψ Stream function
η Dimensionless similarity variable ρ Fluid density [Kg/m3]
θ Dimensionless temperature µ Dynamic viscosity [Kg/ms]
µ0 Magnetic fluid permeability [NA−2] υ Kinematical viscosity [m2/s]
ε1 Convergence criteria ε Dimensionless Curie temperature
β Ferromagnetic interaction parameter κ Thermal conductivity [J/m s K]
M Magnetization Nr Thermal radiation parameter
τw Wall shear stress m Magnetic particle’s shape factor
σ1 Stefan–Boltzmann constant σ Electrical conductivity
χ Mean absorption coefficient Ci Arbitrary coefficient
()m f Magnetic fluid Base fluid
()s Magnetic particles ()′ Differentiation with respect to η

() Dimensional quantities υ f Kinematic viscosity of the fluid

Abbreviations

BFD Biomagnetic fluid dynamics
FHD Ferrohydrodynamics
MHD Magnetohydrodynamic
MRI Magnetic resonance imaging
PDEs Partial differential equations
ODEs Ordinary differential equations
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