
R E S E A R CH AR T I C L E

Group method analysis for blood-Mn-ZnFe2O4 flow and heat
transfer under ferrohydrodynamics through a stretched
cylinder

Jahangir Alam1 | Md. Ghulam Murtaza2 | Efstratios Em. Tzirtzilakis3 |

Mohammad Ferdows1

1Research Group of Fluid Flow Modeling
and Simulation, Department of Applied
Mathematics, University of Dhaka,
Dhaka, Bangladesh
2Department of Mathematics, Comilla
University, Cumilla, Bangladesh
3Fluid Mechanics and Turbomachinary
Laboratory, Department of Mechanical
Engineering, University of the
Peloponnese, Tripoli, Greece

Correspondence
Mohammad Ferdows, Department of
Applied Mathematics, University of
Dhaka, Dhaka 1000, Bangladesh.
Email: ferdows@du.ac.bd

Communicated by: D. Zeidan

Funding information
National Science and Technology (NST),
Bangladesh

In this paper, a steady, viscous, incompressible, and electrically non-

conducting laminar flow of biomagnetic fluid, namely, the flow of blood with

magnetic particles over a stretched cylinder in the presence of magnetic dipole,

is studied. Since magnetic particles with low cytotoxicity can carry away

unwanted reactive oxygen species and provide safeguard for biomedical appli-

cations, this study has immense applications in medical and bio-engineering

sections like cancer treatment, drug delivery, and magnetic resonance imaging

(MRI). The problem is first analyzed by applying group theoretical method,

namely, one parameter group method. The invariance property of system of

partial differential equations (PDEs) under one parameter group method trans-

formations yields the weeny generators. By using the basic theorem of one

parameter group method including invariance conditions, the set of PDEs is

converted into ordinary differential equations (ODEs), and consequently, the

number of independent variables is reduced into one variable. Afterwards, the

resulting coupled nonlinear set of ODEs is numerically solved by introducing

an efficient numerical technique that based upon common finite difference

with central differencing, a tridiagonal matrix manipulation, and finally, an

iterative procedure. A comparative graphical analysis of velocity, temperature

profiles, skin friction coefficient and rate of heat transfer for blood-Mn-

ZnFe2O4 magnetic fluid has been carried out for various physical parameters

such as ferromagnetic interaction parameter and magnetic particles volume

fraction etc. The important findings from the present investigation are that the

temperature of blood is enhanced for larger values of magnetic particles vol-

ume fraction and more effectively than pure blood. It is also found that blood

velocity is increased as the ferromagnetic number increases. The skin friction

coefficient is enhanced 132.22%, and the rate of heat transfer is increased by

5.86% by the application of magnetic field; whereas for particles volume frac-

tion, skin friction decreases about 0.61%, and rate of heat transfer declines

about 4%. Additionally, this study also discloses that the application of group

theoretical method is justified in biomagnetic fluid dynamics especially

research on blood flow and heat transfer, where the blood flow significantly
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influenced by the ferromagnetic number. A comparison has been also per-

formed, and the results are found in excellent agreement with previous publi-

shed in literature. The present study could be considered for magnetic driving

of biologically suitable magnetic particles filled with medicine.
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1 | INTRODUCTION

Studies on biological fluid which known as biomagnetic fluid and whose flows are affected in presence of a strong mag-
netic field are attracted researchers over the last few decades. Because of the fact that all biological fluids contain ion
which can interact with a strong applied magnetic field. One of the characteristics of biomagnetic fluid is blood, and it
is found that blood act as a diamagnetic material when oxygenated, and when deoxygenated, blood behave as a para-
magnetic material. Numerous applications are directly connected in biomedical and bioengineering by considering the
studies of biomagnetic fluid dynamics (BFD) particularly in drug and gene delivery as used by magnetic particles, mag-
netic resonance imaging (MRI) for imaging, reduction of blood during surgeries, in hyperthermia such as cancer treat-
ment, injury treatment, and open heart surgeries as early mentioned by previous works,1–5 whereas magnetic particles
can play a vital role due to their biocompatibility, facile synthesis, and ease that provides abundant functionalized for
specific applications.

Biomagnetic fluid dynamics (BFD) is an area in fluid dynamics where the effects of strong magnetic field are ana-
lyzed on biological fluid. The first mathematical model of BFD was delivered by Haik et al.6 In this study, fluid is
assumed as isothermal, Newtonian, and electrically non-conducted. After few years back, this model is extended by
Tzirtzilakis7 where both principles of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) were considered.
The difference between the studies of Haik et al.6 and Tzirtzilakis7 is that in Tzirtzilakis,7 the temperature distribution
is studied in the flow field considering non-isothermal field. Second thing is that biological fluid such as blood is consid-
ered electrically conducting, and at the same time, polarization forces are also taken into consideration.7 Numerous
studies on 2-D/3-D BFD over stretching/shrinking sheet have been carried out by several researchers in recent past
under different circumstances. Murtaza et al.8 investigated the behavior of biomagnetic fluid considering the magnetic
properties such as electrical conductivity along with polarization. In that particular study, they adopted both principles
of FHD and MHD and found that BFD formulation has significant positive influence rather than MHD or FHD. While
they showed that BFD term remarkably reduced the velocity profile but enhanced the temperature profile comparable
to the formulation of MHD or FHD alone. Similar types of attempt were also found in the study of Ferdows et al.9

which examined the BFD flow in stretched cylindrical surface. The effect of thermal radiation on blood flow and heat
transfer through an unsteady stretching sheet with aid principles of FHD and MHD was examined by Alam et al.10 The
effect of magnetic dipole as well as heat source/sink on Maxwell biomagnetic fluid over a three dimensional stretching
sheet is investigated by Murtaza et al.11

Currently in medical and engineering areas, the study of boundary layer flow and heat transfer of nanofluid took
quite interest from researchers. In 1995, Choi12 was the first who introduced the term nanofluid, where nanoparticles
are mixed with the base fluid such as water and oil due to the fact that the enhancement of thermal conductivity of the
fluid. Gul et al.13 examined the mixed convection flow and heat transfer of water based nanofluid over a vertical chan-
nel, where both magnetic and non-particles are considered for nanoparticles. In presence of magnetic dipole, Alam
et al.14 examined the biomagnetic fluid flow and heat transfer over a stretching sheet, where blood considered as base
fluid and gold considered as nanoparticles. Gholinia et al.15 studied the influence of magnetic field on C2H6O2-Ag and
C2H6O2-Cu nanofluid through a permeable circular cylinder. While Saranya and Al-Mdallal16 examined the sodium
alginate with three magnetic particles like particles CoFe2O4, Mn-ZnFe2O4, and Ni-Fe2O4 over an unsteady contracting
cylinder under the influence of aligned magnetic field. Mehmood et al.17 analyzed the effects of hybrid fractional second
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grade model considering blood as base fluid and Au, Al2O3 as nanoparticles through a stenosed aneurysmal artery with
heat transfer. Abd Elmabodu et al.18 presented a mathematical model for unsteady, incompressible, Newtonian peristal-
tic fluid in a finite length tube with variable viscosity. They observed that the peaks of pressure fluctuate with time and
attain various values with non-integral numbers of peristaltic wave. Eldesoky et al.19 investigated the MHD peristaltic
flow that induced motion in a channel over porous medium. A comprehensive study of the peristaltic propulsion of
hybrid nanofluid where titanium and gold are considered as nanoparticles under the effects of magnetic field was stud-
ied by Bhatti and Abdelsalam.20 Thumma et al.21 studied the Maxwell nanofluid under the influence of heat source/
sink over a three dimensional stretching sheet. Bhatti et al.22 evaluated the flow of MHD water based nanofluid, where
MgO and Ni are used as nanoparticles over a stretching elastic surface in a porous medium. It is notable that nanoparti-
cle flows are widely investigated considering other engineering applications apart from biomedical. Sheikholeslami
et al.23 examined the influence of novel turbulator on efficiency of solar collector system, where authors considered
water as base fluid and MWCNT and Al2O3 as hybrid nanoparticles. They found that velocity enhanced about 43.81%
for the augment values of revolution. Whereas, Sheikholeslami and Ebrahimpour24 present an analysis of solar thermal
improvement by capitalizing water-based Al2O3 nanoparticles. In this paper, authors observed that the heat can
increased up to 0.153% as inclusion of nano-powders. Sheikholeslami et al.25 discussed an hydrothermal analysis of
absorber tube with a solar system involving parabolic reflector and found that heat transfer coefficients is enhanced
about 180.13% for volume fraction. Sheikholeslami and Ali Farshad26 inquired the efficacy of nanoparticles over a solar
collector invoking helical tapes and saw that nusselt number enhanced about 6.47% for the values of circular gap.

The mathematical assumptions that introduced in this model are applied with the one-parameter group transforma-
tion, which further leads to a similarity representation of the given problem. The set of partial differential equations
with boundary conditions reduces to a number of independent variables with a systematic formalism. In 1948,
Birkhoff27,28 was the first who introduced the group methods, as a class of methods for reducing the number of inde-
pendent variables. After that in 1952, Morgan29 presented a theory that leads to the improvement over the earlier simi-
larity methods and the theory that given by Morgan29 later on extended by Michal30 in the same year. To present a
general systematic group formalism for similarity analysis, Moran and Gaggioli31,32 developed an elementary group the-
ory. Abd-el-Malek and Badran33 studied the steady free convective laminar boundary layer flow on a vertical circular
cylinder utilizing the group theoretical analysis. The converted ordinary differential equation with corresponding
boundary conditions are those computed numerically by applying fourth-order Runge–Kutta scheme along with a gra-
dient method. El-Kabeir et al.34 applied the group theoretical transformation to present a mathematical analysis of
incompressible, electrically conducting fluid flow and heat transfer over a vertical cone through porous medium under
the influence of thermal radiation, where El-Kabeir et al.35 solved the problem of unsteady MHD combined convection
flow over a moving vertical sheet with the group transformation.

Considering the above mentioned studies, the aim of the present study is that to find out the solution of the
highly nonlinear BFD problems by means of approaching group theoretical method, namely, one-parameter group
transformation. To the authors' best knowledge, such one-parameter group transformations have not been applied to
BFD problems where blood take as base fluid and Mn-ZnFe2O4 considered as magnetic particles over a stretched cyl-
inder under the influence of a magnetic dipole. By applying this method, the number of independent variables is
reduced by one, and consequently, the set of PDEs with the boundary conditions is reduced to ODEs with the appli-
cable boundary conditions. Effects of the appearing nondimensional physical parameters such as ferromagnetic inter-
action parameter, magnetic particles volume fraction, and arbitrary constant for the case of blood-Mn-ZnFe2O4 on
the distribution of velocity, temperature, skin friction coefficient, and rate of heat transfer have been studied and
presented graphically.

2 | MATHEMATICAL FORMULATION WITH GOVERNING EQUATIONS

An incompressible, viscous, two-dimensional steady laminar boundary layer flow of biomagnetic fluid, namely, the
flow of blood with magnetic particles (Mn-ZnFe2O4) through a stretched cylinder, is considered in this study, where
cylinder is stretched with velocity uw� ¼ u0z�

L , u0 is referred velocity, and L is the characteristic length of the cylinder.
Also it is considered that the radius of the cylinder is R�, the axis z� is taken along the flow, and r� axis is normal to the
cylinder as shown in Figure 1. We also assumed that the surface temperature and ambient fluid temperature that situ-
ated far away from the surface are Tw and Tc, respectively, with Tw <Tc. A magnetic dipole creates a magnetic field of
strength that locates below from the sheet with considering the distance c. Under the above assumptions, the idea of
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Abd-el-Malek and Badran33 is explored, and therefore, the governing equations in cylindrical coordinates can be
written as

∂u�

∂z�
þ v�

r�
þ ∂v�

∂r�
¼ 0 ð1Þ

u�
∂u�

∂z�
þ v�

∂u�

∂r�
¼ μmf

ρmf

1
r�

∂u�

∂r�
þ ∂2u�

∂r�2

� �
þ 1
ρmf

μ0M
∂H�

∂z�
ð2Þ

ρCp
� �

mf u�
∂T�

∂z�
þ v�

∂T�

∂r�

� �
þμ0 T

� ∂M
∂T� u�

∂H�

∂z�
þ v�

∂H�

∂r�

� �
¼ κmf

1
r�

∂T�

∂r�
þ ∂2T�

∂r�2

� �
ð3Þ

with associated boundary conditions:

u� ¼ 0 , v� ¼ 0 , T� ¼Tw at r� ¼R� ð4Þ

u� ! 0 , T� !Tc as r� !∞ ð5Þ

Here, u� and v� are the dimensional velocity components along z� and r� directions. μ0 is the magnetic permeability, H�

is the magnetic field of strength intensity, and M is the magnetization. Furthermore, κ, ρ, Cp, μ are known as bio-
magnetic fluid thermal conductivity, density, specific heat at constant pressure, and dynamic viscosity, respectively,
where the subscript symbols ð Þmf mean magnetic fluid. The magnetic force arises due to the polarization, and mathe-
matically, this term is represented by μ0M

∂H�
∂z� while the term μ0 T

� ∂M
∂T� u� ∂H�

∂z� þ v� ∂H�
∂r�

� �
in Equation (3) indicates ther-

mal conductivity per unit volume, and these two terms are commonly known in FHD.
Following the studies,36,37 a magnetic dipole produces a magnetic field H��!¼ Hz

� ,Hr
�ð Þ whose components H�

z and
H�

r are given by the following.

FIGURE 1 Physical model and coordinate system [Colour figure can be viewed at wileyonlinelibrary.com]
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H�
z z�,r�ð Þ¼ γ

2π
z�2� r� þ cð Þ2
z�2þ r� þ cð Þ2� �2 ð6Þ

H�
r z�,r�ð Þ¼ γ

2π
2z� r� þ cð Þ

z�2þ r� þ cð Þ2� �2 ð7Þ

According to Nadeem et al. and Tahir et al.,36,37 the analogous manipulations of the Equations (6) and (7) take the fol-
lowing form:

∂H�

∂z�
¼� γ

2π
2z�

r� þ cð Þ4 ð8Þ

∂H�

∂r�
¼� γ

2π
�2

r� þ cð Þ3þ
4z�2

r� þ cð Þ5
 !

ð9Þ

Thus, the magnetic field of intensity H� can be expressed as follows.

H� z�,r�ð Þ¼ γ

2π
1

r� þ cð Þ2�
z�2

r� þ cð Þ4
 !

ð10Þ

Again the relation between magnetization M of the biomagnetic fluid with temperature T� and the magnetic field
intensity H� can be defined in the following way as suggested by38

M¼KH� Tc�T�ð Þ ð11Þ

where K is the pyromagnetic coefficient and Tc is the Curie temperature.
The characteristics of magnetic fluids are expressed as follows39:

μmf ¼ μf 1�φð Þ�2:5, ρCp
� �

mf ¼ 1�φð Þ ρCp
� �

f þφ ρCp
� �

s , ρmf ¼ 1�φð Þρf þφρ s,
κmf

κf
¼ κsþ2 κf
� ��2 φ κf � κs

� �
κsþ2κf
� �þφ κf � κs

� � ð12Þ

Here, the subscript symbols ðÞf and ðÞs indicate base fluid (blood) and magnetic particles (Mn-ZnFe2O4).
Next step is to introduce the nondimensional boundary layer variables, and it takes the following form:

z¼ z�

R� ,r¼
r�

R� ,u¼
u�R�

υf
,v¼ v�R�

υf
,H¼H�

H0
,θ¼ Tc�T�

Tc�Tw
ð13Þ

Using (13) and definitions of (12), Equations (1)–(3) along with boundary conditions (4) and (5) are taking the following
dimensionless form:

∂u
∂z

þ v
r
þ ∂v
∂r

¼ 0 ð14Þ

1�φð Þ2:5 1�φþφ
ρs
ρf

 !
u
∂u
∂z

þ v
∂u
∂r

� �
¼ 1
r
∂u
∂r

þ ∂2u
∂r2

þ 1�φð Þ2:5βHθ
∂H
∂z

ð15Þ

ALAM ET AL. 11811
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κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr u

∂θ

∂z
þ v

∂θ

∂r

� �
þ κf
κmf

β EcH ε�θð Þ u
∂H
∂z

þ v
∂H
∂r

� �
¼ 1
r
∂θ

∂r
þ ∂2θ

∂r2
ð16Þ

Along with corresponding boundary conditions

u¼ 0 , v¼ 0 , θ¼ 1at r¼ 1 ð17Þ

u! 0 , θ! 0 as r!∞ ð18Þ

where ferromagnetic interaction parameter β¼ μ0KH
2
0 Tc�Twð ÞR�2ρf

μ2f
; Eckert number Ec¼ μ3f

R�2kf Tc�Twð Þρ2f
; Curie temperature

ε¼ Tc
Tc�Tw

; Prandtl number Pr¼ μCpð Þf
κf

.

Now we set ru¼ ∂ψ
∂r and rv¼� ∂ψ

∂z , and therefore, Equations (15) and (16) become as follows:

1�φð Þ2:5 1�φþφ
ρs
ρf

 !
r
∂ψ

∂r
∂2ψ

∂z∂r
þ ∂ψ

∂z
∂ψ

∂r
� r

∂2ψ

∂r2

� �	 

¼ ∂ψ

∂r
� r

∂2ψ

∂r2
þ r2

∂3ψ

∂r3
þ 1�φð Þ2:5βHr3θ ∂H

∂z
ð19Þ

κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr

∂ψ

∂r
∂θ

∂z
� ∂ψ

∂z
∂θ

∂r

� �
þ κf
κmf

β EcH ε�θð Þ ∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
¼ ∂θ

∂r
þ r

∂2θ

∂r2
ð20Þ

The boundary conditions (17) and (18) are reduced as follows:

∂ψ

∂r
¼ 0 ,

∂ψ

∂z
¼ 0 , θ¼ 1 at r¼ 1 ð21Þ

∂ψ

∂r
! 0 , θ! 0 as r!∞ ð22Þ

3 | SOLUTION OF THE PROBLEM USING GROUP FORMULATION

The partial differential Equations (19)–(22) are now solved by applying a one-parameter group transformation following
the studies of Moran and Gaggioli and El-Kabeir et al.32,34 For this, we initially need to subgroup the transformations.
Afterwards, the number of independent variables will be reduced by one variable, and the governing partial differential
Equations (19)–(21) are converted into a system of ordinary differential equations containing only one-parameter vari-
able in terms of similarity variable.

3.1 | The group systematic formulation

The procedure is initiated with the group G, a class of one parameter “a” of the form

G :

z¼Cz að Þzþkz að Þ
r¼Cr að Þrþkr að Þ
ψ ¼Cψ að Þψþkψ að Þ
θ¼Cθ að Þθþkθ að Þ

H¼CH að ÞHþkH að Þ

8>>>>>><
>>>>>>:

ð23Þ

11812 ALAM ET AL.
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where Cs and ks are real-value functions and at least differentiable in their real argument “a.”

3.2 | The invariance analysis

To transform the differential equations, transformations of the derivatives are obtained from G via chain-rule
operations:

∂S

∂i
¼Cs

Ci

∂S
∂i

∂2S

∂i2
¼ Cs

Ci
� �2 ∂S∂i2

ð24Þ

where S stands for ψ ,θ,H and i¼ z,r.
Equation (19) is said to be invariantly transformed whenever

1�φð Þ2:5 1�φþφ
ρs
ρf

 !
r
∂ψ

∂r
∂2ψ

∂z∂r
þ ∂ψ

∂z
∂ψ

∂r
� r

∂2ψ

∂r2

� �	 

� ∂ψ

∂r
þ r

∂2ψ

∂r2
� r2

∂3ψ

∂r3

� 1�φð Þ2:5βHr3θ
∂H
∂r

¼H1 að Þ
1�φð Þ2:5 1�φþφ

ρs
ρf

 !
r
∂ψ

∂r
∂2ψ

∂z∂r
þ ∂ψ

∂z
∂ψ

∂r
� r

∂2ψ

∂r2

� �	 


� ∂ψ

∂r
þ r

∂2ψ

∂r2
� r2

∂3ψ

∂r3
� 1�φð Þ2:5βHr3θ ∂H

∂z

2
66664

3
77775

ð25Þ

where H1 að Þ is an arbitrary function of the one group parameter “a” which may be constant.
Now Equation (25) yields,

1�φð Þ2:5 1�φþφ
ρs
ρf

 !
Cψð Þ2
CzCr r

∂ψ

∂r
∂2ψ

∂z∂r
þ Cψð Þ2

CzCr
∂ψ

∂z
∂ψ

∂r
� r

∂2ψ

∂r2

� �" #

�Cψ

Cr

∂ψ

∂r
þCψ

Cr r
∂2ψ

∂r2
�Cψ

Cr r
2 ∂

3ψ

∂r3
� Crð Þ3Cθ CH

� �2
Cz 1�φð Þ2:5βHr3θ ∂H

∂z
þR1

¼H1 að Þ
1�φð Þ2:5 1�φþφ

ρs
ρf

 !
r
∂ψ

∂r
∂2ψ

∂z∂r
þ ∂ψ

∂z
∂ψ

∂r
� r

∂2ψ

∂r2

� �	 


� ∂ψ

∂r
þ r

∂2ψ

∂r2
� r2

∂3ψ

∂r3
� 1�φð Þ2:5βHr3θ ∂H

∂z

2
66664

3
77775

ð26Þ

where

R1 ¼ 1�φð Þ2:5 1�φþφ
ρs
ρf

 !
Cψð Þ2kr
Cz Crð Þ2

∂ψ

∂r
∂2ψ

∂z∂r
� ∂ψ

∂z
∂2ψ

∂r2

	 

þ Cψkr

Crð Þ2
∂2ψ

∂r2
� Cψkr

Crð Þ3

� 2rCr þkrð Þ ∂
3ψ

∂r3
� Crð Þ3Cθ CH

� �
kH

Cz 1�φð Þ2:5β r3θ� Crð Þ3 CH
� �2

kθ

Cz 1�φð Þ2:5

�β r3
∂H
∂z

HþkH
� �� 3 Crrð Þ2kr þ3rCr krð Þ2þ krð Þ3� � CH

� �2
Cθ

Cz 1�φð Þ2:5β Hθ
∂H
∂z

"

þ CH
� �

Cθ

Cz 1�φð Þ2:5β θ
∂H
∂z

þ CH
� �

kθ

Cz 1�φð Þ2:5β Hθ
∂H
∂z

CH þ1
� �#

ð27Þ
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For invariant transformation, R1 is equated to zero and this satisfied by setting the following.

kr ¼ kH ¼ kθ ¼ 0 ð28Þ

And comparing the coefficients of Equation (26) on both sides and with H1 að Þ, we get,

H1 að Þ¼ Cψð Þ2
CzCr ¼

Crð Þ3Cθ CH
� �2

Cz ¼Cψ

Cr ð29Þ

where H1 að Þ = constant.
In similar way, Equation (20) is said to be invariantly transformed, whenever there is a function H2 að Þ such that

κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr

∂ψ

∂r
∂θ

∂z
� ∂ψ

∂z
∂θ

∂r

� �
þ κf
κmf

βEcHε
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �

� κf
κmf

β EcHθ
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
� ∂θ

∂r
þ r

∂2θ

∂r2

� �

¼H2 að Þ

κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr

∂ψ

∂r
∂θ

∂z
� ∂ψ

∂z
∂θ

∂r

� �
þ κf
κmf

β EcHε
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �

� κf
κmf

β EcHθ
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
� ∂θ

∂r
þ r

∂2θ

∂r2

� �
2
66664

3
77775

ð30Þ

and Equation (30) reduces to

κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr

CψCθ

CrCz

∂ψ

∂r
∂θ

∂z
� ∂ψ

∂z
∂θ

∂r

� �

þ κf
κmf

Cψð Þ2 CH
� �2

CrCz βEcHε
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �

� κf
κmf

CψCθ CH
� �2

CrCz β EcHθ
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
�Cθ

Cr
∂θ

∂r
þ r

∂2θ

∂r2

� �
þR2

¼H2 að Þ

κf
κmf

1�φþφ
ρCp
� �

s

ρCp
� �

f

 !
Pr

∂ψ

∂r
∂θ

∂z
� ∂ψ

∂z
∂θ

∂r

� �
þ κf
κmf

β EcHε
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �

� κf
κmf

β EcHθ
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
� ∂θ

∂r
þ r

∂2θ

∂r2

� �
2
66664

3
77775

ð31Þ

where

R2 ¼ κf
κmf

CψCHkH

CrCz β Ecε
∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �

� κf
κmf

CψCθ CH
� �2

CrCz β Ec
Cψkθ CH

� �2
CrCz þCψCθCHkH

Cz θþCψCHkθkH

CzCr

" #

� ∂ψ

∂r
∂H
∂z

� ∂ψ

∂z
∂H
∂r

� �
� Cθkr

Crð Þ2
∂2θ

∂r2

ð32Þ

Again for the transformation of invariant, R2 is equal to zero if the following setting is satisfied
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kr ¼ kH ¼ kθ ¼ 0 ð33Þ

and

H2 að Þ¼CψCθ

CzCr ¼
CψCθ CH

� �2
CzCr ¼Cψ CH

� �2
CzCr ¼Cθ

Cr ð34Þ

where H2 að Þ = constant.
The invariance of the boundary conditions (21) and (22) under transformations of (23) and (24) implies

Cr ¼ 1 and Cθ ¼ 1 ð35Þ

In addition of those conditions given by Equation (28).
Now combining Equations (29) and (34) and invoking (28), (33), and (35), we have the following.

Cψ ¼CH ¼Cz ð36Þ

Finally, we get the invariantly transformations of (19)–(22) in one parameter group G. Substitute the values of (28),
(33), (35), and (36) in (23), and the group G takes the following form:

G :

z¼Cz að Þzþkz að Þ
r¼ r

ψ ¼Cz að Þψþkψ að Þ
θ¼ θ

H¼Cz að ÞH

8>>>>>><
>>>>>>:

ð37Þ

3.3 | The complete set of invariants

Our ultimate purpose is of use the group methods in order to represent the given problem in the form of an ordinary
differential equation (similarity representation) in a single independent variable (similarity variable). Then we have to
proceed in our present analysis to get a complete set of absolute invariants. The complete set of invariants is as follows:

i. The absolute invariants of the independent variables z,rð Þ are η¼ η z,rð Þ.
ii. The absolute invariants of the dependent variables ψ ,H,θð Þ

gj z,r,ψ ,H,θð Þ¼Fj η z,rð Þð Þ , j¼ 1, 2, 3:

The application of a basic theorem of group theory as stated by Morgan and Moran and Gaggioli29,32 and states that a
function gj z,r,ψ ,H,θð Þ is an absolute invariant of a one-parameter group if it satisfies the following first-order linear
differential equation:

X5
i¼1

αiSiþβið Þ ∂g
∂Si

¼ 0 ð38Þ

ALAM ET AL. 11815
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where

Si ¼ z,r,ψ ,H,θ

αi ¼ ∂Cs

∂a
a0
� �

βi ¼
∂ks

∂a
a0
� �

i¼ 1, 2, 3, 4, 5

ð39Þ

Such that,

α1 ¼ ∂Cz

∂a
a0
� �

, α2 ¼ ∂Cr

∂a
a0
� �

, α3 ¼ ∂Cψ

∂a
a0
� �

, α4 ¼ ∂CH

∂a
a0
� �

, α5 ¼ ∂Cθ

∂a
a0
� �

β1 ¼
∂kz

∂a
a0
� �

, β2 ¼
∂kr

∂a
a0
� �

, β3 ¼
∂kψ

∂a
a0
� �

, β4 ¼
∂kH

∂a
a0
� �

, β5 ¼
∂kθ

∂a
a0
� �

where a0 denotes the value of “a” which yields the identity element of the group G.

3.3.1 | Absolute invariants of independent variables

Since kr ¼ kH ¼ kθ ¼ 0 and Cr ¼Cθ ¼ 1; which gives α2 ¼ α5 ¼ β2 ¼ β4 ¼ β5 ¼ 0. Now the absolute invariant η z,rð Þ of the
independent variables z,rð Þ is obtained by using Equation (38) when it satisfy the first-order differential equation:

α1zþβ1ð Þ ∂η
∂z

þ α2rþβ2ð Þ ∂η
∂r

¼ 0 ð40Þ

So the solution of (40) is given by the following.

η¼ η rð Þ ð41Þ

3.3.2 | Absolute invariants of the dependent variables

Now the next step is to find out the absolute invariants of dependent variables. Since from Equation (37) we see that θ
is itself an absolute invariant, thus, we have the following.

g z,r;θð Þ¼ θ ηð Þ ð42Þ

Following the similar manner of (40), we also get the absolute invariants of dependent variables which takes the
following form:

ψ z,rð Þ¼ϕ zð ÞF ηð Þ
H z,rð Þ¼ω zð ÞE ηð Þ ð43Þ

where ϕ zð Þ,ω zð Þ,F ηð Þ,E ηð Þ are functions to be determined. Since H z,rð Þ,ω zð Þ are independent of r whereas η
depends on r, it follows that E ηð Þ must be equal to a constant say E0. Thus, Equation ((43) becomes the following.

ψ z,rð Þ¼ϕ zð ÞF ηð Þ
H z,rð Þ¼ω zð ÞE0

ð44Þ
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The functions of ϕ zð Þ,ω zð Þ will be determined later on, like that the set of governing Equations (2) and (3) is trans-
formed into a set of ordinary differential equations of functions F ηð Þ,θ ηð Þ.

3.4 | The reduction to an ordinary differential equation

Now the set of ordinary differential equations is obtained by using the forms of establishment of dependent and inde-
pendent absolute invariant as we early discussed where the absolute invariant of independent may assumed in the fol-
lowing form:

η¼ r ð45Þ

Using the above transformations of (44) and (45), we get the following set of ordinary differential equation:

r2F
000 þ 1�φð Þ2:5 1�φþφ

ρs
ρf

 !
k1F�1

" #
rF

00

þ 1� 1�φð Þ2:5 1�φþφ
ρs
ρf

 !
rk1F

0 þk1F
� �" #

F
0 þ 1�φð Þ2:5k2r3βθ¼ 0

ð46Þ

rθ
00 þ 1þ 1�φþφ

ρCp
� �

s

ρCp
� �

f

 !
κf
κmf

k1PrF

" #
θ
0 � κf

κmf
k3β Ec ε�θð ÞF 00 ¼ 0 ð47Þ

With applicable boundary conditions,

F¼F
0 ¼ 0 , θ ¼ 1 at r¼ 1 ð48Þ

F
0 ! 0 , θ! 0 as r!∞ ð49Þ

where the arbitrary coefficients are determined by the following expression:

k1 ¼ ∂ϕ

∂z
, k2 ¼ω

ϕ
E2
0
∂ω

∂z
,k3 ¼ϕωE2

0
∂ω

∂z
ð50Þ

Case 1: Consider k2 ¼ k3 ¼ 1. Equations (46) and (47) yield

r2F
000 þ 1�φð Þ2:5 1�φþφ

ρs
ρf

 !
k1F�1

" #
rF

00

þ 1� 1�φð Þ2:5 1�φþφ
ρs
ρf

 !
rk1F

0 þk1F
� �" #

F
0 þ 1�φð Þ2:5r3βθ¼ 0

ð51Þ

rθ
00 þ 1þ 1�φþφ

ρCp
� �

s

ρCp
� �

f

 !
κf
κmf

k1PrF

" #
θ

0 � κf
κmf

β Ec ε�θð ÞF 00 ¼ 0 ð52Þ

with corresponding boundary conditions.

F¼F
0 ¼ 0 , θ ¼ 1 at r¼ 1 ð53Þ

ALAM ET AL. 11817
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F
0 ! 0 , θ! 0 as r!∞ ð54Þ

The similar attempt is already discussed by 33 when the values β¼ 1, φ¼Ec¼ 0 is considered for (51) and (52).
Moreover, the characteristics of velocity components in boundary layer are as follows:

i. The vertical velocity component u¼ 1
r k1zþC1ð ÞF 0

; C1 is an integrating constant.
ii. The radial velocity component v¼ k1

r F.

4 | NUMERICAL PROCEDURE

Now the set of ordinary differential Equations (51) and (52) with corresponding boundary conditions (53) and (54) are
solved by using an efficient numerical technique; see Kafoussias and Williams.40 This numerical technique has better
stability characteristics and is simple and efficient. The main things of this technique are that it is constituted with the
following features:

1. It is based on the common finite difference method with central differencing.
2. On a tridiagonal matrix manipulation, and
3. On an iterative procedure.

The important part of this numerical technique is to set up a finite effective value of η∞, convergence criteria ε1, and
step size h. In whole numerical calculations, we assume h¼Δη¼ 0:01, ε1 ¼ 10�3, and η∞ ¼ 1. The numerical procedure
continues until the desired accuracy is obtained. For ensuring the accuracy of numerical technique, it is needed to
check the present values with earlier documented. For that, we compare our results with Abd-el-Malek and Badran33

in terms of velocity and temperature profiles, and the results are found in excellent agreement and presented by
Figures 2 and 3.

5 | ESTIMATION OF VALUES OF PHYSICAL PARAMETERS

Since our present model is known as biomagnetic fluid model (BFD), where blood take as base fluid and manganese
franklinite (Mn-ZnFe2O4) are assumed as magnetic particles. So, before moving to the numerical calculations, it is
needed to address some realistic values related to this model. After surveying the studies of Alam et al. and Bongar and
Hriczo,14,41 we found the following thermo-physical values of blood and Mn-ZnFe2O4 as shown in Table 1.

FIGURE 2 Comparison of velocity profile for Prandtl number Pr [Colour figure can be viewed at wileyonlinelibrary.com]
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Whereas human body temperature is Tw ¼ 370c,42 body Curie temperature is Tc ¼ 410c. Using these values, we
found dimensionless Curie temperature ε¼ 78:5.8 The values of various parameters that act in this model are Prandtl
number Pr¼ 21 , 23 , 25,14 ferromagnetic interaction parameter β¼ 0 , 5 , 10 , 15,8,14 Eckert number
Ec¼ 0:001 , 0:005 , 0:1 ,43 volume fraction φ¼ 0:0 , 0:01 , 0:03 , 0:05, 0:1 , 0:2,44 and the arbitrary constant
k1 ¼�1 , �0:5 , 0 , 1, 5.33

6 | RESULTS AND DISCUSSION

A comprehensive analysis of involving physical parameters is demonstrated graphically and discussed with their respec-
tive outcomes throughout Figures 4–9 under representation of dimensionless axial velocity and temperature distribu-
tions. The influence of arbitrary constant coefficient, namely, k1, on velocity and temperature profiles are displayed at
Figures 4 and 5. It is clearly seen from these figures that numerical solutions can be obtained by choosing values of neg-
ative, positive, or even zero k1, whereas Abd-el-Malek and Badran33 found the results only when the values of k1 are
positive. It is observed that the velocity of blood-MnZnFe2O4 reduces with augment values of k1; whereas the tempera-
ture profile is enhanced in this case.

Figures 6 and 7 display the influence of the ferromagnetic interaction parameter on velocity and temperature pro-
files. As the ferromagnetic number rises, the axial velocity is increased, and the temperature profile is reduced gradu-
ally. Noted that, major increment of the blood-MnZnFe2O4 velocity is observed for β¼ 15, whereas major reduction of
the blood-MnZnFe2O4 temperature is observed for β¼ 15. The reason behind that is due to the behavior of polariza-
tion/magnetization force on blood that applied perpendicular to the cylindrical surface. The polarization creates a resis-
tance force which is further known as Kelvin force.

The effects of magnetic particles, volume fraction on velocity, and temperature profiles are displayed in Figures 8
and 9, respectively. It can be seen that when the values of magnetic particles volume fraction increase up to 20% in
blood, the magnetic fluid velocity decreases, and it's near about η∞ ≈ 0:7, but after that, the augment of fluid velocity is
also noticed. Whereas Figure 9 shows that the fluid temperature increases when the values of φ increase gradually. It is
also observed from Figure 9 that blood-MnZnFe2O4 temperature enhancement is much better than pure blood φ¼ 0ð Þ.

FIGURE 3 Comparison of temperature profile for Prandtl number Pr [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Thermo-physical values of blood and Mn-ZnFe2O4

Physical properties Cp jkg�1K�1
� �

ρ kgm�3� �
κ Wm�1K�1ð Þ

Blood 3:9�103 1050 0:5

Mn�ZnFe 2O 4 800 4900 5
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FIGURE 4 Effect of k1 on velocity profiles [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Effect of k1 on temperature profiles [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Effect of β on velocity profiles [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Effect of β on temperature profiles [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Effect of φ on velocity profiles [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Effect of φ on temperature profiles [Colour figure can be viewed at wileyonlinelibrary.com]
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The thermal enhancement of base fluid such as blood is found in better position as the better thermal conductivity
property of magnetic particles (Mn-ZnFe2O4) is applied. This may be also due that magnetic particles spawn friction in
blood which creates a resistance to the fluid flow and as a result the fluid velocity reduces.

7 | PHYSICAL QUANTITIES

Another physical interest of this proposed method in engineering point of view is to find out the solutions of skin fric-
tion coefficient and the rate of heat transfer. Mathematically, skin friction coefficient Cf and the rate of heat transfer
Nu can be defined as,

Cf ¼ 2 τw

ρf
u0z�
L

� �2 ð55Þ

FIGURE 10 Variation of the skin friction coefficient for numerous values of φ [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Variation of rate of heat transfer for numerous values of φ [Colour figure can be viewed at wileyonlinelibrary.com]
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And

Nu¼ z�qw
κf Tc�Twð Þ ð56Þ

where τw ¼ μmf
∂u�
∂r�
� �

r�¼R� and qw ¼ κmf
∂T�
∂r�
� �

r�¼R� . After calculations, we finally get the form of skin friction
coefficient and the rate of heat transfer in the following way:

Cf ¼ 2ϑf 2

1�φð Þ2:5R�4 u0z
L

� �2 ∂u
∂r

� �
r¼1

ð57Þ

And

Nu¼ � zκmf

κf

∂θ

∂r

� �
r¼1

ð58Þ

The variation of skin friction coefficient and rate of heat transfer for several values of magnetic particle volume fraction
and ferromagnetic number with regard to Prandtl number are displayed in Figures 10–13. These figures show that the
skin friction coefficient and rate of heat transfer enhanced monotonically for larger values of ferromagnetic number,

FIGURE 12 Variation of the skin friction coefficient for numerous values of β [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Variation of the rate of heat transfer for numerous values of β [Colour figure can be viewed at wileyonlinelibrary.com]
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whereas the reverse trend is observed for magnetic particles volume fraction. Physically, this can be explained as that
the increment of β leads the Kelvin force as resistance force which has a clear tendency to increase the rate of heat
transfer of blood-MnZnFe2O4 and its augments about 5.86%, whereas the skin friction coefficient is enhanced by
132.22% for β¼ 5 to β¼ 15. From Figure 12, it also noticed that when the values of φ enhanced from 0 to 0.2, the rate of
heat transfer and skin frication coefficient of blood are decreased about 4% and 0.61%, respectively.

8 | CONCLUSIONS

In this work, the flow and heat transfer of biomagnetic fluid with magnetic particles are investigated through a
stretched cylinder under the influence of a magnetic dipole, where blood is considered as a base fluid and
Mn-ZnFe2O4 assumed as magnetic particles which are in spherical shape. The governing partial differential equations
are solved by applying group theoretical method known as one parameter group method with invariance analysis. By
introducing one parameter group method, the set of PDEs is converted into a system of ODEs along with boundary
conditions, where the number of independent variables is reduced into one variable. The profiles of velocity, tempera-
ture, skin friction coefficient, and rate of heat transfer were numerically calculated and presented graphically by
applying an efficient numerical technique that consists of common finite differences method with central differencing,
a tridiagonal matrix manipulation, and an iterative procedure. The proposed model can be applied in reducing blood
flow during surgeries, drug delivery, and in MRI. Though, from the present investigation, we can draw the following
statements:

i. In the presence of magnetic particles, volume fraction and arbitrary constant velocity of blood-Mn-ZnFe2O4 reduce;
whereas reverse trend is observed for ferromagnetic interaction parameter.

ii. For enlarging values of ferromagnetic interaction parameter, the temperature distribution is decreased, whereas
the reverse trend is observed for magnetic particles volume fraction and arbitrary constant.

iii. The distributions of velocity, temperature, skin friction coefficient, and rate of heat transfer were numerically
obtained for any values of arbitrary constant either positive or negative even zero; whereas Sheikholeslami and
Ebrahimpour24 found the solution only for positive cases.

iv. With increasing values of ferromagnetic number from 5 to 15, the rate of heat transfer augments by 5.86% and skin
friction coefficient enhanced by 132.22%.

v. Both the skin friction coefficient and rate of heat transfer reduce as the values of magnetic particles volume fraction
are enlarged. Where the rate of heat transfer is reduced about 4% and the skin friction coefficient is about 0.61%.
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LIST OF SYMBOLS
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H�,H magnetic field of strength (A/m)
H1,H2 arbitrary function of one-parameter group
uw� stretched velocity (m/s)
γ strength of magnetic field at the source position
M magnetization
K pyromagnetic coefficient (K�1)
Ec Eckert number
Pr Prandtl number
k1,k2,k3 arbitrary coefficients
Nu rate of heat transfer
Cf skin friction coefficient
ε dimensionless Curie temperature
β ferromagnetic interaction parameter
c distance between the magnetic dipole to sheet (m)
T� fluid temperature (K)
Tw temperature of the sheet (K)
Tc Curie temperature (K)
Cp specific heat at constant pressure (J kg�1 K�1)
F

0
dimensionless velocity component in z- direction

φ dimensionless magnetic particles volume fraction
η dimensionless similarity variable
θ dimensionless temperature
ψ stream function
ρ fluid density (kg/m3)
μ dynamic viscosity (kg/ms)
μ0 magnetic fluid permeability (NA�2)
υ kinematical viscosity (m2/s)
ε1 convergence criteria
κ thermal conductivity (J/m s K)
ϕ,ω constant functions

LIST OF ABBREVIATIONS
BFD biomagnetic fluid dynamics
FHD ferrohydrodynamics
MHD magnetohydrodynamics
ODEs ordinary differential equations
PDEs partial differential equations

SUBSCRIPTS AND SUPERSCRIPTS SYMBOLS
ðÞmf magnetic fluid
ðÞf base fluid
ðÞs magnetic particles (solid particles)
ðÞ0 differentiation with respect to η
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