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Abstract

An incompressible, electrically conducting Biomagnetic Fluid Dynamics (BFD) flow—namely the flow of blood with
agnetic particles through a two-dimensional stretching cylinder under the influence of a magnetic dipole—is numerically

nd theoretically investigated in the present study. Herein, fluid viscosity and thermal conductivity are supposed to vary as
n inverse function and as linear functions of temperature, respectively. This study involves two areas of analysis, namely
agnetohydrodynamics (MHD) and ferrohydrodynamics (FHD). The basic blood flow features when magnetic particles are

dded to blood, as well as those of pure blood are discussed. Using a similarity approach, the governing system of partial
ifferential equations are converted into a system of ordinary differential equations which are solved numerically by considering
n efficient technique based on a common finite differences method, consisting of central differencing, tridiagonal matrix
anipulation and an iterative procedure. The significant effects of various physical non-dimensional parameters concerning

he axial velocity, temperature, skin friction coefficient and rate of heat transfer are demonstrated graphically. The obtained
esults reveal that with increasing values of the ferromagnetic interaction parameter, the magnetic field parameter, the thermal
onductivity parameter and the viscosity variation parameter, fluid (blood-Fe3O4) velocity is reduced, whereas both axial
elocity and temperature are enhanced for the curvature parameter. Both the skin friction coefficient and the rate of heat
ransfer decline with rising values of the thermal conductivity parameter. To make the results physically reliable, a temporal
tability analysis is also provided in this study. Finally, the accuracy of the applied numerical technique is validated with
xisting published literature for some limiting cases, and the results are found to be in excellent agreement. The present
utcomes disclose that the behavior of blood flow can be controlled by employing a strong magnetic field. It is hoped that
uch kind of results will be useful in medical sector especially in MRI, magnetic drug targeting and magnetic hyperthermia
reatments.

2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Biomagnetic fluid; Blood; Magnetic particles; Variable fluid viscosity; Thermal conductivity; Magnetohydrodynamics;
errohydrodynamics; Stretched cylinder; Magnetic dipole

∗ Corresponding author.
E-mail address: etzirtzilakis@uop.gr (E.E. Tzirtzilakis).
https://doi.org/10.1016/j.matcom.2022.04.008
0378-4754/© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2022.04.008
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2022.04.008&domain=pdf
mailto:etzirtzilakis@uop.gr
https://doi.org/10.1016/j.matcom.2022.04.008


J. Alam, M.G. Murtaza, E.E. Tzirtzilakis et al. Mathematics and Computers in Simulation 199 (2022) 438–462
Nomenclature

(u, v) Velocity components [m/s]
(x, r) Components of the Cartesian system[m]
δ Constant
R Radius of the cylinder [m]
c Distance between the magnetic dipole to sheet [m]
L Characteristic length [m]
U0 Referred velocity [m/s]
H Magnetic field of strength [A/m]
T Fluid temperature [K]
Tw Temperature of the sheet [K]
Tc Curie temperature (Fluid temperature far away from the sheet) [K]
M1 Fluid magnetization [A/m]
M Magnetic field parameter
B Magnetic induction
U (x) Stretched velocity [m/s]
C p Specific heat at constant pressure [J kg−1 K−1]
f

′

Dimensionless velocity component in x-direction
γ Strength of magnetic field at the source position.
K Pyromagnetic coefficient [K−1]
D Curvature parameter
a Thermal conductivity parameter
Pr Prandtl number
Nux Rate of heat transfer
C f Skin friction coefficient
Re Local Reynolds number
t Time [s]

Greek symbols

η , τ Dimensionless coordinates
θ Dimensionless temperature
θ

′

(0) Wall heat transfer gradient
ψ Stream function
ϕ Volume fraction
ρ Fluid density [kg/m3]
µ Dynamic viscosity [kg/ms]
µ∗ Constant values of the coefficient of the fluid viscosity
µ0 Magnetic fluid permeability [NA−2]
υ Kinematical viscosity [m2/s]
σ Electrical conductivity [S/m]
ε1 Convergence criteria
ε Dimensionless Curie temperature
λ Viscous dissipation parameter
β Ferromagnetic interaction parameter
θr Viscosity variation parameter
ω Eigen value parameter
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α Dimensionless distance
κ Thermal conductivity [J/m s K]
κ∗ Constant values of the coefficient of the fluid viscosity
τw Wall shear stress

List of abbreviations

BFD Biomagnetic Fluid Dynamics
FHD FerroHydroDynamics
MHD MagnetoHydroDynamics
PDEs Partial Differential Equations
ODEs Ordinary Differential Equations

Subscripts symbol

()m f Indicates magnetic fluid
() f Represent base fluid
()s Means magnetic particles (solid particles)

Superscripts symbol

()′ Differentiation with respect to η

1. Introduction

In recent decades in the biomedical and bioengineering sectors, different types of magnetic particles with
iological fluid have gained serious attention from researchers because of their numerous applications such
s in magnetic resonance imaging (MRI), cancer therapy (hyperthermia), magnetic drug, gene delivery and
agnetic separation [10,11,15,24,33,40] due to their biocompatibility, biodegradability and ease of synthesis,

roviding abundant functions for specific applications. In fluid mechanics, Biomagnetic Fluid Dynamics (BFD) is a
omparatively new area of study, in which the action of a strong applied magnetic field is investigated on biological
uids, and blood is one of the prominent examples of a biomagnetic fluid. Essentially, this new area involves the
rinciples of magnetohydrodynamics (MHD) and ferrohydrodynamics (FHD). In MHD, fluids are assumed to be
lectrically conducting and the influence of magnetization/polarization is ignored, whereas in FHD, the fluid flow
s influenced by the polarization force arising due to the presence of fluid magnetization, and fluid is treated as an
lectrically non-conducting fluid.

Considering the principles of ferrohydrodynamics (FHD), Haik et al. [16] were the first to deliver the idea of
mathematical model of BFD, in which fluids were assumed to be Newtonian and electrically non-conducting,

howing in their studies that fluid flow had a great influence on the presence of high-gradient magnetic fields.
ater, Tzirtzilakis [42] developed a BFD model, namely, a blood model considering the combined principles of
HD and FHD. Recently, Murtaza et al. [30] provided a BFD study including the ideas of MHD and FHD. They

ound that in terms of the velocity profile, the BFD formulation produces significantly reduced results compared to
hose of the MHD or FHD separate formulations, whereas in terms of the temperature profile, the reverse behavior
s found. An incompressible, electrically conducting blood model through a stretching cylinder, as presented by
erdows et al. [12] and this study, also combined the principles of MHD and FHD. Siddiqa et al. [38] investigated

he thermal radiation therapy in the presence of a localized magnetic field in relation to biomagnetic fluid flow.
ajashekhar et al. [35] analyzed a blood flow model on two regions of a cylindrical surface, one of which was
onsidered as a magnetic region and the other as a non-magnetic region, and this model was based on the principles
f FHD. They found that in the magnetic region, blood flow was remarkably reduced compared to the non-magnetic
egion. The effects of variable fluid viscosity on biomagnetic fluid flow and heat transfer over a two-dimensional
on-linear stretching sheet were studied by Alam et al. [3]. The researchers found that blood flow decreased with

ncreasing values of the viscosity variation parameter.
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A theoretical and mathematical study of Carreau type fluid model where fluid assumed as non-Newtonian,
hrough a nonlinear stretching sheet in presence of temperature dependent thermal conductivity and thermal
adiation analyzed by Megahed [26]. Abbas et al. [1] have discussed the effects of thermal dependent viscosity
nd conductivity on steady Powell–Eyring fluid over a stratified stretching sheet in porous medium. In this study
nvestigators found that the impact of thermal radiation on fluid temperature profile are more significant than that
n the velocity distribution. Using shooting method, Megahed et al. [27] analyzed the unsteady MHD fluid flow
odel over a stretching sheet in the presence of heat flux. Moreover, this study was also extended considering fluid

iscosity and thermal conductivity as temperature dependent. The impacts of viscosity and thermal conductivity
n MHD convective flow through a non-isothermal vertical surface in porous medium in the presence of viscous
issipative heat and thermal radiation have obtained by Hazarika et al. [18]. Finally, a comprehensive study of blood
ow through a stretching sheet in the presence of magnetic dipole and thermal radiation studied by Alam et al. [5].

In 1995, the term nanofluid was first introduced by Choi [9], who showed that the mixing of a base fluid with
anoparticles enhanced the fluid properties, mainly the thermal conductivity. Recently, Hazarika et al. [19] analyzed
numerical solution of C2H6O2 based nanofluid flow in a vertical channel by utilizing MATLAB code, where

anoparticles are in platelet shape and Al2O3 and TiO2 particles are considered. The importance of these metal
xide nanoparticles is found in pharmaceutical areas and biomedical engineering. The shape effect on graphene–
ater nanofluid in a two-dimensional Marangoni boundary layer under the influence of suction and thermal radiation
as discussed by Rahid et al. [34]. Alam et al. [4] examined the blood-Au nanofluid flow in the presence of a
agnetic dipole over a two-dimensional stretching sheet and consequently both principles of MHD and FHD were

lso adopted in the considered BFD flow. In that study, they showed how nanoparticles were influenced when mixed
ith base fluids such as blood and found that blood velocity was significantly enhanced in case of the blood-Au
ixture rather than pure blood, and the opposite effect was found in terms of the temperature profile. Abdi et al. [2]

tudied the magnetic fluid flow, considering water as the base fluid and with Fe3O4 used for the magnetic particles
n the turbulence region. Investigations of MHD nanofluid flow and heat transfer in a microchannel can be found in
he study of Karimipour et al. [22], in which two types of nanoparticles were used—namely, Au and Al2O3—and
ater was used as a base fluid. Ali et al. [6] proposed a time fractional model, where Brinkman-type fluid (blood)
ith magnetic particles was examined in a heated cylindrical tube. With the aid of Laplace and Hankel’s transforms,

xact solutions were found, and they showed that the magnetic field controlled the blood velocity, and this was more
ronounced when the values of the magnetics were large. The effects of velocity and thermal slipping on H2O-Ag
anofluid over a two-dimensional stretching cylinder were investigated by Mishra et al. [28], in which two types of
odels were considered for different shapes—one was spherical and the other was cylindrical. They found that in

oth cases, the temperature profile was enhanced by increasing the volume fraction. Amer Qureshi [7] examined
on-Newtonian two-dimensional Williamson nanofluids, i.e., Cu–water and TiO2-water, over a stretching sheet in
he presence of velocity slip effects, in which the thermal conductivity of the fluid was assumed as a linear function
f temperature. The effects of variable fluid viscosity and thermal conductivity on MHD Casson nanofluid flow
ver a vertical flat plate were studied by Gbadeyan et al. [14]. Hussain [20] investigated the effects of variable
uid viscosity on an MHD hybrid nanofluid, subject to homogeneous–heterogeneous reactions. Mohamed et al. [8]
nalyzed the MHD boundary layer fluid flow, considering water as a base fluid and magnetic particles assumed as
anoparticles (i.e., magnetite, Cobalt ferrite, Mn-Zn ferrite) over a two-dimensional flat plate under the influence
f thermal radiation.

Based on the above-mentioned studies, to the authors knowledge, the numerical as well as the theoretical BFD
ow with magnetic particles over a two-dimensional stretching cylinder subject to no-slip boundary conditions
as not yet been investigated. The mathematical model used is that of the extended BFD which incorporates
oth MHD and FHD formulations. Moreover, the fluid viscosity and thermal conductivity are assumed as inverse
nd linear function of temperature, respectively. The governing set of partial differential equations subject to
orresponding boundary conditions is transformed into ordinary differential equations using the usual similarity
ransformations. The numerical solution is attained by applying an efficient technique which is based on a common
nite difference method with central differencing, tridiagonal matrix manipulation and an iterative procedure. To
ake the results more physically reliable, a theoretical stability analysis has also been performed. The important

ehavior of appearing physical parameters such as ferromagnetic interaction parameter, magnetic field parameter,
agnetic particles volume fraction, curvature parameter, thermal conductivity, variable viscosity etc. on the velocity
nd temperature profile, as well as the skin friction coefficient and the rate of heat transfer, are discussed in detail,

441



J. Alam, M.G. Murtaza, E.E. Tzirtzilakis et al. Mathematics and Computers in Simulation 199 (2022) 438–462

i
t

2

w
R
c
t
m

a
3

Fig. 1. Schematic diagram of the flow problem [6].

considering the cases of pure blood and blood with Fe3O4 nanoparticles. It is hope that the present study will help
n understanding the basic mechanism for applications in biomedicine and bioengineering such as separation of
argeted molecules, magnetic drug targeting, diagnostic techniques, hyperthermia, or hypothermia treatment etc.

. Mathematical analysis with flow geometry

The flow of an electrically biomagnetic fluid (blood) with magnetic particles stretched with velocity U (x) =
U0x

L ,
here U0 is a positive constant and L is a characteristic length along a two-dimensional stretching cylinder of radius
, is considered in this study. The x-axis is considered to be along the cylinder and the r-axis is normal to the
ylinder, as demonstrated in Fig. 1. The temperature of the ambient fluid is considered as Tc situated far away from
he sheet, and Tw is the surface temperature, where Tw < Tc. A magnetic field of strength H is generated by a

agnetic dipole on the center of the r axis at distance c from the sheet.
Considering the above assumptions, we expand upon the ideas of [39] and the governing continuity, momentum

nd energy equations associated with the applicable boundary conditions are expressed in the following form [12,
0,39,42]:

∂

∂x
(ru)+

∂

∂r
(rv) = 0 (1)

u
∂u
∂x

+ v
∂u
∂r

=
1
ρm f

1
r
∂

∂r

[
µm f

(
r
∂u
∂r

)]
−
σm f

ρm f
B2u +

µ0

ρm f
M1
∂H
∂x

(2)

(
ρCp

)
mf

(
u
∂T
∂x

+ v
∂T
∂r

)
+ µ0T

∂M1

∂T

(
u
∂H
∂x

+ v
∂H
∂r

)
=

1
r
∂

∂r

[
κ∗

mf

(
r
∂T
∂r

)]
(3)

Subject to the boundary conditions [39]:

r = R : u = U (x), v = 0, T = Tw (4)

r → ∞: u → 0, T → Tc (5)

Here, in the x and r directions the velocity components are denoted by the symbols u and v, respectively.
Furthermore, the symbols in the above equations ρ, σ, µ,C p , κ, µ0, H,M1 denote biomagnetic fluid (blood)
density, electrical conductivity, dynamic viscosity, specific heat at constant pressure, thermal conductivity, magnetic
permeability, magnetic field strength and magnetization, respectively. The subscript symbol ()m f indicates the
magnetic fluid. Furthermore, B symbolizes the magnetic induction, where B = µ0 H . The term σm f B2u represents
the Lorentz force per unit volume, which acts along the x direction and is known as MHD [29,30]. The third term
on the right-hand side of Eq. (2), i.e., µ0 M1

∂H
∂x , represents the components of the ferromagnetic body force per

unit volume, which depend on the existence of a magnetic gradient in the x direction, whereas the terms in the
442
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energy equation µ0T ∂M1
∂T

(
u ∂H
∂x + v ∂H

∂r

)
in (3) account for heating due to adiabatic magnetization, and according

to [16,18,42–44], these terms are well known in the area of FHD.
According to [32,41,43,44], the magnetic dipole gives rise to a magnetic field that is sufficiently strong to saturate

the biofluid and its scalar potential, given by

V =
α

2π
x

x2 + (r + c)2
(6)

Here, α is a dimensionless distance and α = γ where γ is the strength of the magnetic field.
Therefore, the magnitude of the magnetic field of intensity, i.e.,

−→H  = H, is given by

H (x, r) =
[
H2

x + H2
r

] 1
2 =

γ

2π
x2

x2 + (r + c)2
(7)

nd Hx , Hr are the components of the magnetic field
−→
H = (Hx , Hr ), given by

Hx (x, r ) = −
∂V
∂x

=
γ

2π
x2

− (r + c)2(
x2 + (r + c)2

)2 (8)

Hr (x, r) = −
∂V
∂r

=
γ

2π
2x (r + c)(

x2 + (r + c)2
)

2
(9)

According to the previous studies of analogous manipulations of Eqs. (8) and (9), these take the following form:

∂H
∂x

= −
γ

2π
2x

(r + c)4
(10)

∂H
∂r

= −
γ

2π

(
−2

(r + c)3
+

4x2

(r + c)5

)
(11)

Thus, the magnetic field intensity H can be expressed as

H (x, r) =
γ

2π

(
1

(r + c)2
−

x2

(r + c)4

)
(12)

The variation of magnetization M1 with temperature T is defined by a linear relation [41–43]

M1 = K (Tc − T ) (13)

Following the studies of Salawu and Dada [37], fluid viscosity and thermal conductivity are assumed to be
emperature-dependent, where fluid viscosity is an inverse function of temperature and thermal conductivity takes
linear form and is mathematically defined as:

1
µm f

=
[1 + δ (Tc − T )]

µ∗

m f
(14)

Furthermore, the thermal conductivity is expressed as:

κ∗

m f = κm f (1 + aθ) (15)

Where α is the thermal conductivity and δ is a constant. Furthermore, the symbols µ∗

m f and κm f indicate the
constant values of the coefficient of fluid viscosity and the thermal conductivity of the biomagnetic fluid.

The physical parameters of the magnetic fluid are considered as previously studied by Makinde [25], and these
take the following form:

µ∗

m f = µ f (1 − ϕ)−2.5, (ρC p)m f = (1 − ϕ)(ρC p) f + ϕ(ρC p)s,

ρm f = (1 − φ)ρ f + φρ s

(16)

σm f

σ f
= 1 +

3
(
σs

σ f
− 1

)
ϕ(

σs
+ 1

)
−

(
σs
σ f

− 1
)
ϕ

,
κm f

κ f
=

(κs + 2κ f ) − 2φ(κ f − κs)
(κs + 2κ f ) + φ(κ f − κs)

(17)
σ f

443



J. Alam, M.G. Murtaza, E.E. Tzirtzilakis et al. Mathematics and Computers in Simulation 199 (2022) 438–462

r

3

t

f

t

P
w

f

Here, ϕ indicates the volume fraction of the magnetic particles, whereas ϕ = 0 corresponds to the regular
fluid. Note that the subscript symbols () f and ()s signify the base fluid (blood) and magnetic particles (Fe3O4),
espectively.

. Transformation of equations

To make the set of Eqs. (1)–(3), associated with boundary conditions (4) and (5), into dimensionless equations
he following non-dimensional coordinates are introduced [39]:

η =
r2

− R2

2R

(
U
ϑ f x

) 1
2
, ψ =

√
Uϑ f x R f (η) , θ (η) =

Tc − T
Tc − Tw

(18)

Now, the continuity equation can be satisfied automatically when the velocity components are defined in the
ollowing way:

u =
1
r
∂ψ

∂r
v = −

1
r
∂ψ

∂x

(19)

By implementing equations (18) and (19) into the momentum and energy equations, i.e., (2) and (3), we obtain
he following system of ordinary differential equations:

(1 + 2ηD) f′′′ + 2D f′′ −
θ ′

θ − θr
(1 + 2ηD) f′′ +

θ − θr

θr
(1 − φ)2.5

⎡⎣1 +

3
(
σs
σf

− 1
)
φ(

σs
σf

+ 1
)

−

(
σs
σf

− 1
)
φ

⎤⎦M f′

+
θ − θr

θr
(1 − φ)2.5

(
1 − φ + φ

ρs

ρf

) (
f′2 − f f′′

)
+
θ − θr

θr
(1 − φ)2.5

2βθ

(η + α)4
= 0

(20)

(1 + aθ) (1 + 2ηD) θ ′′
+ 2D (1 + aθ) θ ′

+ (1 + 2ηD) aθ ′2
+
κf

κmf

(
1 − φ + φ

(
ρCp

)
s(

ρCp
)

f

)
Pr fθ ′

+
κf

κmf

2βλf (θ − ε)

(η + α)3
= 0

(21)

Along with boundary conditions:

η = 0 : f = 0, f ′
= 1, θ = 1 (22)

η → ∞: f ′
→ 0, θ → 0 (23)

In the above set of ordinary differential equations the dimensionless parameters are: the ferromagnetic interaction

parameter β =
γ

2π
µ0 K (Tc−Tw)ρ f

µ2
f

; the viscous dissipation parameter λ =
u0µ

2
f

Lκ f (Tc−Tw)ρ f
; the Curie temperature

ε =
Tc

Tc−Tw
; the curvature parameter D =

(
Lυ f
u0 R2

) 1
2 ; the dimensionless distance α =

(
u0

Lυf

) 1
2 c; the Prandtl number

r =
(µC p) f
κ f

; the magnetic field parameter M =
σ f µ

2
0 H2 L
u0

; and the viscosity variation parameter θr = −
1

δ(Tc−Tw)
,

here for liquids the value of θr is negative and for gases θr is positive.
The most important characteristic of the present analysis from the engineering point of view is to study the skin

riction coefficient and the rate of heat transfer, which are mathematically defined by

C f =
2τw
ρ f U 2 and Nux =

xqw
κ f (Tc − Tw)

(24)

where τw and Nux represent the local shear stress and heat transfer from the surface, respectively, and are defined
in following way:

τw = µm f

(
∂u
∂r

)
r=R

and qw = κm f

(
∂T
∂r

)
r=R

(25)

Using (25), Eq. (24) can be expressed in the following form:

C f Re
1
2 =

2
2.5 f ′′(0) (26)
(1 − ϕ)
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4

p

t
i

Nux Re−
1
2 = −

κm f

κ f
θ ′(0) (27)

Here, Re =
U x
υ f

indicates the local Reynolds number.

. Stability analysis

Following the studies of Ferdows et al. [13] and Murtaza et al. [31], to perform the stability analysis in the
resent model, we need to express this model in an unsteady form, and this can be written in the following way

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

=
1
ρm f

1
r
∂

∂r

[
µm f

(
r
∂u
∂r

)]
−
σm f

ρm f
B2u +

µ0

ρm f
M1
∂H
∂x

(28)

(
ρC p

)
m f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂r

)
+ µ0T

∂M1

∂T

(
u
∂H
∂x

+ v
∂H
∂r

)
=

1
r
∂

∂r

[
κm f

(
r
∂T
∂r

)]
(29)

where time is represented by the symbol t and the new similarity transformations are:

η =
r2

− R2

2R

(
u0

ϑ f L

) 1
2
, u =

u0x
L
∂ f (η, τ )
∂η

, v = −
R
r

√
u0υ f

L
f (η , τ ) ;

θ (η , τ ) =
Tc − T
Tc − Tw

, τ =
u0t
L

(30)

By introducing new similarity variables, Eqs. (28)–(29) are reduced in the form given below:

(1 + 2η D)
∂3 f
∂η3 + 2D

∂2 f
∂η2 −

1

θ − θr
(1 + 2ηD)

∂2 f
∂η2

∂θ

∂η
+
θ − θr

θr
(1 − ϕ)2.5⎡⎣1 +

3
(
σs
σ f

− 1
)
ϕ(

σs
σ f

+ 1
)

−

(
σs
σ f

− 1
)
ϕ

⎤⎦M
∂ f
∂η

+
θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρs

ρ f

)
[
∂2 f
∂η∂τ

+

(
∂ f
∂η

)2

− f
∂2 f
∂η2

]
+
θ − θr

θr
(1 − ϕ)2.5

2βθ
(η + α)4

= 0

(31)

(1 + aθ) (1 + 2ηD)
∂2θ

∂η2 + 2D (1 + aθ)
∂θ

∂η
+ (1 + 2ηD) a

(
∂θ

∂η

)2

+
κ f

κm f

(
1 − ϕ + ϕ

(
ρC p

)
s(

ρC p
)

f

)
Pr
[

f
∂θ

∂η
−
∂θ

∂τ

]
+
κ f

κm f

2βλ f (θ − ε)

(η + α)3
= 0

(32)

With the transformed boundary conditions:

f (0, τ ) = 0,
∂ f (0, τ )
∂η

= 1, θ (0, τ ) = 1 (33)

∂ f (∞, τ )

∂η
→ 0, θ (∞, τ ) → 0 (34)

According to Weidman et al. [46], the governing set of ordinary differential equations (20)–(21), along with
boundary conditions (22) and (23), are expressed as stabilized steady flow solutions by writing the following scheme:

f (η , τ ) = f0 (η)+ e−ωτ F (η, τ ) , θ (η , τ ) = θ0 (η)+ e−ωτG (η , τ ) (35)

The symbol ω represents the eigenvalue parameter in the set of equations ω1 < ω2 < ω3 < · · · ... < ωn , where
he flow is stable if the values of ω1 > 0 and the opposite happens, i.e., the initial growth of a disturbance occurs,
f ω < 0. Consequently, it is assumed that F η, τ and G η , τ are small compared to f η = f η and
1 ( ) ( ) ( ) 0 ( )
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θ (η) = θ0 (η ). After introducing (35) into (31) and into (34), it is obtained that:

(1 + 2ηD)
∂3 F
∂η3 + 2D

∂2 F
∂η2 − (1 + 2ηD)

[
f ′

0′

G
∂G
∂η

+
θ ′

0

G
∂2 F
∂η2

]
+ (1 − ϕ)2.5⎡⎣1 +

3
(
σs
σ f

− 1
)
ϕ(

σs
σ f

+ 1
)

−

(
σs
σ f

− 1
)
ϕ

⎤⎦MG
∂F
∂η

+ (1 − ϕ)2.5
(

1 − ϕ + ϕ
ρs

ρ f

)
[

G
∂2 F
∂η∂τ

− ω
∂F
∂η

+ 2 f ′

0
∂F
∂η

− f0
∂2 F
∂η2 − F f ′′

0

]
+ (1 − ϕ)2.5

2βG2

(η + α)4
= 0

(36)

(1 + aG) (1 + 2ηD)
∂2G
∂η2 + 2D (1 + aG)

∂G
∂η

+ 2a (1 + 2ηD) θ0
∂G
∂η

+

κ f

κm f

(
1 − ϕ + ϕ

(
ρC p

)
S(

ρC p
)

f

)
Pr
[

f0
∂G
∂η

+ Fθ ′

0 −
∂G
∂τ

+ ωG
]

−
κ f

κm f

2βλFε

(η + α)3
+

κ f

κm f

2βλ ( f0G + Fθ0)

(η + α)3
= 0

(37)

and the boundary conditions are:

F (0, τ ) = 0,
∂F (0, τ )

∂η
= 1, G (0, τ ) = 1 (38)

∂F (∞, τ )

∂η
→ 0,G (∞, τ ) → 0 (39)

Now, to find the stabilization of the initial growth or decay of the disturbance of the steady-state flow solutions,
it is set τ = 0, as well as F (η, τ ) = F0 (η) , G (η, τ ) = G0 (η) and hereby the following form of the values of
the linearized eigenvalue is derived:

(1 + 2η D) F ′′′

0 + 2DF ′′

0 − (1 + 2ηD)
[

f ′′G ′

0

G0
+
θ ′

0 F ′2
0

G0

]
+ (1 − ϕ)

2.5⎡⎣1 +

3
(
σS
σ f

− 1
)
ϕ(

σS
σ f

+ 1
)

−

(
σS
σ f

− 1
)
ϕ

⎤⎦M G0 F ′

0 + (1 − ϕ)
2.5
(

1 − ϕ + ϕ
ρS

ρ f

)
[
2 f ′

0G0 F ′

0 − ωG0 F ′

0 − f0G0 F ′′

0 − F0G0 f ′′

0

]
+ (1 − ϕ)

2.5 2βG2
0

(η + α)4
= 0

(40)

(1 + aG0) (1 + 2ηD) G ′′

0 + 2D (1 + aG0)G ′

0 + 2a (1 + 2ηD) θ0G ′
+
κ f

κm f

(
1 − ϕ + ϕ

(ρCP)S

(ρCP) f

)
Pr
[

f0G ′

0 + Fθ ′

0 + ωG0
]
−
κ f

κm f

2βλF0ε

(η + α)3
+
κ f

κm f

2βλ ( f0G0 + F0θ0)

(η + α)3
= 0

(41)

subject to the boundary conditions:

F (0) = 0, F ′

0 (0) = 0, G0 (0) = 0 (42)

F ′

0 (η) → 0,G0 (η) → 0 as η → ∞ (43)

Following the studies of Harris et al. [17], the smallest values of the eigenvalues can be found if one can relax
the boundary conditions F ′

0 (η) → 0 as η → ∞ into F ′′

0 (0) = 1, and this takes the following form:

F (0) = 0, F ′

0 (0) = 0, G0 (0) = 0 , F ′′

0 (0) = 1 (44)

G0 (∞) → 0 (45)

5. Numerical procedure

According to the study of Kafoussias and Williams [21], this model can be solved numerically by applying an
approximate technique that has better stability characteristics than the classical Runge–Kutta combined shooting
method. Moreover, is simple, accurate and efficient and it is based on three common essential features. This
technique is based on (i) the common finite difference method with central differencing, (ii) tridiagonal matrix
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manipulation, and finally, (iii) an iterative procedure. According to this study, the momentum Eq. (20) can be
expressed as:

(1 + 2ηD) f ′′′
+

[
2D −

θ ′

θ − θr
(1 + 2ηD)−

θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f
]

f ′′

+

⎡⎣θ − θr

θr
(1 − ϕ)2.5

⎡⎣1 +

3
(
σS
σ f

− 1
)
ϕ(

σS
σ f

+ 1
)

−

(
σS
σ f

− 1
)
ϕ

⎤⎦M +
θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f ′

⎤⎦ f ′

−
θ − θr

θr
(1 − ϕ)2.5

2βθ
(η + α)4

= 0

(46)

This Eq. (46) is expressed as a second-order ordinary differential equation by setting y (x) = f ′(η) and we have,

(1 + 2ηD)
(

f ′
)
′′ +

[
2D −

θ ′

θ − θr
(1 + 2ηD)−

θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f
] (

f ′
)′

+

⎡⎣θ − θr

θr
(1 − ϕ)2.5

⎡⎣1 +

3
(
σS
σ f

− 1
)
ϕ(

σS
σ f

+ 1
)

−

(
σS
σ f

− 1
)
ϕ

⎤⎦M +
θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f ′

⎤⎦ f ′
=

θ − θr

θr
(1 − ϕ)2.5

2βθ
(η + α)4

(47)

hich takes the following form:

P (x) y′′ (x)+ Q (x) y′ (x)+ R (x) y (x) = S (x) (48)

here,

P ( x ) = 1 + 2ηD , Q ( x ) = 2D −
θ ′

θ − θr
(1 + 2ηD)−

θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f ,

R ( x) =
θ − θr

θr
(1 − ϕ)2.5

⎡⎣1 +

3
(
σS
σ f

− 1
)
ϕ(

σS
σ f

+ 1
)

−

(
σS
σ f

− 1
)
ϕ

⎤⎦M +
θ − θr

θr
(1 − ϕ)2.5

(
1 − ϕ + ϕ

ρS

ρ f

)
f ′

S ( x ) =
θ − θr

θr
(1 − ϕ)2.5

2βθ

(η + α)4

(49)

Now Eq. (48) can be solved using a common finite difference method with central differencing and tridiagonal
atrix manipulation. For that, the 2nd order ODEs of (48) can be written in the following way at the domain point

xn

P (xn) y′′ (xn)+ Q (xn) y′ (xn)+ R (xn) y (xn) = S (xn) (50)

Using central differencing expansion, Eq. (49) may be expressed for y′ term as

P (xn)
yn+1 − 2yn + yn−1

∆x2 + Q (xn)
yn+1 − yn−1

2∆x
+ R (xn) yn = S (xn)+ O

(
∆x2) (51)

nd this takes the form,[
P (xn)

∆x2 −
Q (xn)

2∆x

]
yn−1 +

[
−2P (xn)

∆x2 + R (xn)

]
yn +

[
P (xn)

∆x2 +
Q (xn)

2∆x

]
yn+1

= S (xn)+ O
(
∆x2) (52)

To solve Eqs. (51) or (52), we drop the truncation error term O
(
∆x2

)
and of course there are namely N equations

or one of each node. Thus the required N equations simultaneously written in one equation for each node as
Ay = b (53)
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Fig. 2. Variations of f ′ (η) with different values of β and ϕ.

Here, A is square matrix of size N × N , thus the three non-zero diagonal are written along a row as

an,n−1 =

[
P (xn)

∆x2 −
Q (xn)

2∆x

]
an,n =

[
−2P (xn)

∆x2 + R (xn)

]
an,n+1 =

[
P (xn)

∆x2 +
Q (xn)

2∆x

] (54)

here the other entries ai j become zero.
Since there are N node points, vector b can be written as

b = { S1,S2,S3, . . . .........,Sn−1,Sn,Sn+1, . . . ...SN−1,SN}
T (55)

Where Sn = S (xn) and the unknown vector y as

y = { y1, y2, y3, . . . ........., yn−1, yn, yn+1, . . . ..., yN−1, yN}
T (56)

Now the required tridiagonal matrix form of Eq. (48) can be written as for N = 5,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 0

a21 a22 a23 0 0

0 a32 a33 a34 0

0 0 a43 a44 a45

0 0 0 a54 a55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(57)

According to [21], before starting the numerical procedure we need to assume the initial guesses for f ′ (η) and
θ (η) between η = 0 and η = η∞ (η → ∞) which satisfy the boundary conditions (22) and (23). For this, it is
assumed as initial distributions that,

f ′ (η) = 1 −
η

η∞

and θ = 1 −
η

η∞

These selected curves satisfy the boundary conditions. By integrating f ′ (η) the distribution of f (η) is derived.
θ (η) is then retained, whereas the momentum Eq. (48) is solved using an algorithm employing a tridiagonal scheme,
enabling a new approximation for f ′ (η) to be produced. The distribution of f (η) is updated by integrating the
new estimation of f ′ (η) . These new profiles of f ′ (η) and f (η) are then used for new inputs, etc. Therefore, the

momentum Eq. (48) is solved iteratively until the convergence is attained. The criterion of convergence involves
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Fig. 3. Variations of θ (η) with different values of β and ϕ.

Fig. 4. Variations of f ′ (η) with different values of M and ϕ.

Fig. 5. Variations of θ (η) with different values of M and ϕ.
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a

Fig. 6. Variations of f ′ (η) with different values of D and ϕ.

Fig. 7. Variations of θ (η) with different values of D and ϕ.

the values of the physically important gradient f ′′ (0) and the iterations stop when the difference in the values of
f ′′ (0) between two successive iterations are less than a small quantity ε.

After f ′ (η) is obtained, we solve the energy Eq. (21) with boundary conditions (22) and (23) using the same
lgorithm, but without iterations now, as the energy Eq. (21) is linear and it can be expressed as:

(1 + aθ) (1 + 2ηD) θ ′′
+

[
2D (1 + aθ)+ (1 + 2ηD) a θ ′

+
κ f

κm f

(
1 − ϕ + ϕ

(ρCP)S

(ρCP) f

)
Pr f

]
θ ′

+
κ f

κm f

2βλ f

(η + α)3
θ =

κ f

κm f

2βλ f ε

(η + α)3

(58)

By setting y (x) = θ (η), equation (4 50) is expressed in second-order linear differential equation form in the
following way:

P x y′′ x + Q x y′
( ) ( ) ( ) (x)+ R (x) y (x) = S (x) (59)
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Fig. 8. Variations of f ′ (η) with different values of θr and ϕ.

Fig. 9. Variations of θ (η) with different values of θr and ϕ.

where,

P ( x ) = (1 + aθ) (1 + 2ηD) ,

Q ( x ) = 2D (1 + aθ)+ (1 + 2ηD) a θ ′
+
κ f

κm f

(
1 − ϕ + ϕ

(ρCP)S

(ρCP) f

)
Pr f ,

R ( x) =
κ f

κm f

2βλ f

(η + α)3
, S ( x ) =

κ f

κm f

2βλ f ε

(η + α)3

(60)

In the whole numerical procedure, a step size of h = ∆η = 0.01, ηmin = 0 and ηmax = 1 are applied and the
olution is convergent with an approximation of 10−5.

. Numerical validation and thermophysical properties of magnetic particles (Fe3 O4) and base fluid (blood)

To check the validity and accuracy of the numerical code, the present results are compared with those of Rangi
t al. [36] for the skin friction coefficient when M = 0 , β = 0 , ϕ = 0 , κS = κ f = 1, which are shown in Table 1
nd which were found to be in good agreement. Furthermore, in Table 2 the physical properties of blood and Fe3O4

re shown derived from earlier studies [4,23]. Finally, to obtain the grid suitable for the present mathematical model,
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Fig. 10. Variations of f ′ (η) with different values of a and ϕ.

Fig. 11. Variations of θ (η) with different values of a and ϕ.

a grid independence test is studied here for ferromagnetic interaction parameter (β = 0, β = 5) and the obtained
results are listed in Table 3. From Table 3, it is clearly seen that ∆η = 0.01 grid provides an acceptable accurate
esults for the whole ranges of the BFD flows considered here.

. Results and discussion

To obtain realistic results, previous studies related to the present formulation were taken into account in order
o initiate a physically plausible case scenario of flow of blood as a base fluid. Thus, human body temperature is
onsidered to be Tw = 3◦C [45] and body Curie temperature Tc = 41◦C. For the above values it is obtained that the
imensionless temperature ε = 78.5 [30], viscous dissipation number λ = 6.4 × 10−14 [30] and dimensionless
istance α = 1 [18]. Moreover, the values of the leading parameters were as follows—the Prandtl number
r = 21, 23, 25 [18], magnetic field parameter M = 1, 3, 5 [4,30], volume fraction ϕ = 0.0, 0.05, 0.1, 0.2 [4],

urvature parameter D = 0.5, 1.0, 1.5 [39], fluid viscosity variation parameter θr = −0.6, −0.4, −0.2 [3], thermal
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i

Fig. 12. Variations of f ′ (η) with different values of Pr and ϕ.

Fig. 13. Variations of θ (η) with different values of Pr and ϕ.

Table 1
Comparison of the skin friction coefficient (f′′ (0)) for
various values of the curvature parameter D when M =

0 , β = 0 , ϕ = 0 , κS = κ f = 1.

D Present results Rangi et al. [36]

0.0 −1.005 −1.000
0.25 −1.006 −1.094378
0.5 −1.182 −1.188715
0.75 −1.283 −1.281833
1.0 −1.434 −1.459308

conductivity parameter a = 1, 2, 3 [34] and ferromagnetic interaction parameter β = 0, 5, 10 [4,30]. Note that
φ = 0 indicates pure blood flow and φ ̸= 0 indicates blood flow with magnetic particles.

Figs. 2 and 3 reveal the effects of the ferromagnetic interaction parameter on the axial velocity and temperature
distributions in the presence of the magnetic particle volume fraction. Blood flow with magnetic particles (Fe3O4)
s indicated in red, and the blue line shows the behavior of pure blood, meaning that no magnetic particles were
453
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Fig. 14. Variation of f ′′ (0) with M for various values of β and ϕ.

Fig. 15. Variation of f ′′ (0) with θr for various values of β and ϕ.

Table 2
Thermo-physical values of blood and Fe3O4.

Physical properties C p
(
J kg−1 K−1) ρ

(
kg m−3) σ

(
s m−1) κ

(
W m−1 K−1)

Blood 3.9 × 103 1050 0.8 0.5
Fe3O4 670 5180 0.74 × 106 9.7

added. It is observed that blood-Fe3O4 velocity is decreased with rising values of the ferromagnetic number, and
it is noticed that when magnetic particles were added into blood, its flow was much better compared to that of
pure blood. However, in terms of the temperature profile, for pure blood is significantly increased, as can be seen
in Fig. 3, compared to that with blood-Fe3O4. This occurs because of the relation between the Kelvin force and
he ferromagnetic interaction parameter. This Kelvin force is also known as drug force. Such Kelvin force acts
long fluid flow direction as a resistance force and thus, this results to reduction of the fluid velocity as well as
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Fig. 16. Variation of f ′′ (0) with a for various values of β and ϕ.

Fig. 17. Variation of f ′′ (0) with β for various values of M and ϕ.

Table 3
Grid independence test for β = 0 and β = 5 while other parameter values are α = 1, ε = 78.5,Pr = 21, a =

3, D = 1,M = 5, λ1 = 6.4 × 10−14, θr = −0.1, φ = 0.2.

Step size
h = ∆η

η β = 0 β = 5 CPU time

f ′ θ f ′ θ

0.01
0.04 0.7471 0.8716 0.6622 0.9274

1.248 s
0.08 0.5758 0.7539 0.4443 0.854

0.02
0.04 0.7474 0.8715 0.663 0.9274

0.842 s
0.08 0.5761 0.7537 0.4455 0.8539

0.04
0.04 0.7487 0.8712 0.6661 0.9273

0.655 s
0.08 0.5778 0.753 0.4499 0.8536
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Fig. 18. Variation of f ′′ (0) with β for various values of θr and ϕ.

Fig. 19. Variation of f ′′ (0) with β for various values of a and ϕ.

temperature enhancement. From these figures, it is also evident that blood flow can be significantly influenced by
the presence of ferromagnetic number.

The effects of the magnetic field parameter, along with magnetic particle volume fraction, are shown in Figs. 4
and 5. Since the magnetic field produces a Lorentz force that acts in the direction reverse of the flow. As a result,
when the values of Lorentz force are gradually increased, the fluid velocity decreases. The opposite behavior of the
temperature is observed where the temperature profile is enhanced with the increment of the Lorentz force. This
is clearly apparent in Figs. 4 and 5. Furthermore, it is also evident from these figures that the velocity of the fluid
with magnetic particles, i.e., blood-Fe3O4, is slightly enhanced compared to that of pure blood, and vice versa for
the temperature profile.

The variation effects of the magnetic particle volume fraction on velocity and temperature profiles, along with
the impact of the curvature parameter, are presented at Figs. 6 and 7. Interestingly, from Figs. 6 and 7 it is noticed
that both velocity and temperature distributions were enhanced with accretive values of the curvature parameter. It
is well known that when the values of the curvature parameter are enhanced, the cylinder’s radius comes down,
as a result the surface area is reduced, causing less resistance to the blood’s motion. Consequently, the blood flow
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Fig. 20. Variation of −θ ′ (0) with β for various values of a and ϕ.

Fig. 21. Variation of f ′′ (0) with θr for various values of M and ϕ.

accelerates and this can be observed from the plotted figures. However, the heat transfer of fluid becomes faster
form surface to blood when the values of curvature parameter are one or above.

Figs. 8 and 9 demonstrate the characteristics of the viscosity variation parameter, along with the magnetic particle
volume fraction, on the velocity and temperature profiles. As the viscosity variation parameter increases, the velocity
profile decreases but the temperature profile is enhanced. This is because when the values of θr are getting higher,
the velocity thickness of the boundary layer in the horizontal direction is decreased. Physically, higher values of
θr express the difference in temperature between the ambient fluid and the cylindrical surface and it causes to
augmentation of the temperature distribution.

Figs. 10 and 11 show the influence of the thermal conductivity parameter on velocity and temperature distribu-
tions when ϕ = 0.2 and ϕ = 0.0. These two figures reveal that when the values of thermal conductivity parameter
are gradually increased, the fluid velocity profile decreases, whereas the opposite occurs for the temperature profile.
Due to the fact that the enhancement of the values of the temperature-dependent thermal conductivity parameter
results to increase the thermal conductivity of electrically conducting fluids such as blood. Consequently, the heat
of the fluid is rapidly transferred through the blood (human body), since the thermal conductivity of the material is

much higher.
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Fig. 22. Variation of f ′′ (0) with a for various values of M and ϕ.

Fig. 23. Variation of f ′′ (0) with M for various values of D and ϕ.

Fig. 24. Variation of −θ ′ (0) with M for various values of D and ϕ.
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Fig. 25. Variation of f ′′ (0) with M for various values of θr and ϕ.

The effects of the Prandtl number on velocity and temperature profiles in the presence of the magnetic particle
volume fraction are demonstrated in Figs. 12 and 13. It was obviously expected that the velocity profile is increased
as the values of Prandtl number increased, and the temperature profile is decreased. These outcomes are clearly seen
in Figs. 12 and 13. This is justified from the fact that the Prandtl number is the ratio between momentum diffusivity
and thermal diffusivity. Thus, higher values of the Prandtl number indicate that the momentum of fluid velocity is
increased in the boundary layer.

Finally, the variations of the skin friction coefficient and the rate of heat transfer, in terms of parameters such
as the ferromagnetic interaction parameter, magnetic field parameter, viscosity variation parameter, and thermal
conductivity parameter, are demonstrated in Figs. 14 to 27. Figs. 14 to 16 show the influence of the ferromagnetic
number with the magnetic volume fraction on the skin friction coefficient with regard to the magnetic field parameter,
the viscosity variation parameter and the thermal conductivity parameter, respectively. In all those cases, the skin
friction coefficient was decreased, and it was found that when magnetic particles were added to the base fluid
(blood), values were slightly enhanced compared to that of pure blood.

Figs. 17 to 20 display the impact of the magnetic parameter, the viscosity variation parameter and the thermal
conductivity parameter in the presence of the magnetic particle volume fraction on the skin friction coefficient and
the rate of heat transfer with regard to the ferromagnetic interaction parameter. It is clearly evident in the figures that
skin friction decreases, and the rate of heat transfer (only for the thermal conductivity parameter) is also reduced
as the values of these parameters is increased. Furthermore, Figs. 21 and 22 illustrate the influence of the magnetic
field parameter on the skin friction coefficient with regard to the viscosity variation parameter and the thermal
conductivity parameter, showing the same results.

The variations of the skin friction coefficient and the rate of heat transfer under the influence of the curvature
parameter, the viscosity variation parameter, and the thermal conductivity parameter with the magnetic particle
volume fraction with regard to the magnetic field parameter are demonstrated in Figs. 23 to 27. For the curvature
parameter, the skin friction coefficient is reduced, whereas rate of heat transfer increases in this case. However,
both skin friction coefficient and rate of heat transfer are decreased with the increment in the thermal conductivity
parameter, whereas the skin friction coefficient decreases for the viscosity variation parameter.

8. Concluding remarks

An application of the mathematical model of BFD is carried out for the study of blood flow with magnetic
particles over a two-dimensional stretching cylinder. This model involves both MHD and FHD principles. In
addition, the effects of temperature dependent variables of fluid viscosity and thermal conductivity were considered.
Moreover, blood flow in two separated cases is also investigated namely pure blood and blood with magnetic

particles. Using a similarity transformation, the governing partial differential equations were converted into ordinary
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Fig. 26. Variation of f ′′ (0) with M for various values of a and ϕ.

Fig. 27. Variation of −θ ′ (0) with M for various values of a and ϕ.

ifferential equations along with the corresponding boundary conditions. A temporal stability analysis was also
arried out and the numerical results were obtained using an efficient technique based on a common finite difference
ethod with central differencing, tridiagonal matrix manipulation and an iterative procedure. The hope is that the

resent analysis will be utilized in the biomedicine and bioengineering sectors especially in targeted molecule,
RI, cancer therapy etc. The proposed mathematical model shows that under certain conditions blood flow can be

ontrolled by employing a strong magnetic field in boundary layer region, and where magnetic particles play an
mergent role. The main points derived from the present analysis are listed below:

• A rise in ferromagnetic interaction parameter, the magnetic field parameter, the viscosity variation parameter,
and the thermal conductivity parameter, causes decrement of the fluid velocity, whereas the temperature profile
was enhanced in all these cases. It is noted that the velocity of the blood-Fe3O4 mixture was significantly
increased compared to the fluid velocity of pure blood, and the opposite trend was found in the temperature
distribution.

• Both velocity and temperature distributions were enhanced when the values of the curvature parameter was
gradually increased.
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• When the Prandtl number is enhanced, the velocity distribution is increased, whereas the temperature profile
is decreased.

• Increment of the ferromagnetic interaction parameter, the magnetic field parameter and the viscosity variation
parameter yields the skin friction coefficient to decline.

• The curvature parameter tends to decrease the skin friction coefficient but enhance the rate of heat transfer.
• Both skin friction coefficient and rate of heat transfer are increased when the values of thermal conductivity

are increased.

The proposed mathematical formulation may be expanded for other indispensable subclasses of non-Newtonian
fluid such as Powell–Eyring fluid, Maxwell fluid and many others. Additionally, the effects of thermal radiation
may be discussed for the present model in future along with boundary slip conditions. Moreover, the effects of
magnetic/non-magnetic particles shape factor could also be investigated in future. It is hoped that the proposed
BFD modeling will further be validated using new experimental data.
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