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This paper focuses on the theoretical and numerical investigation of the unsteady, 
viscous, incompressible, two-dimensional laminar boundary layer flow of a Newtonian 
biomagnetic fluid over a stretching sheet under the influence of an applied magnetic 
field in the presence of heat transfer. The magnetic field is induced by a magnetic dipole 
placed below the stretching sheet. The magnetic field intensity represents the magneto-
thermo-mechanical coupling. This allows exclusion of the biofluid that is distant from 
the sheet at Curie temperature to avoid further magnetization. The unsteadiness of the 
flow is discernible in the fluid flow properties. The mathematical model of the problem 
conforms to the principles of Magnetohydrodynamics (MHD) and Ferrohydrodynamics 
(FHD). In this work, the study is performed on a specific biofluid, human blood. The 
modified Stokes principle is used to implement the model under the assumption that 
along with the three thermodynamic variables P, ρ, and T, the Biomagnetic Fluid 
Dynamics (BFD) fluid behavior can be characterized as a function of magnetization M. 
To describe the physical problem, a coupled non-linear system of ordinary differential 
equations subject to appropriate boundary conditions is derived from Navier-Stokes and 
thermal energy equations by performing non-dimensionalization of the considered 
variables. To solve these equations, the dsolve routine in the MAPLE software is used. 
Numerical results for flow profiles and the local skin friction coefficient (Cfx) and the 
local Nusselt number (Nux) are discussed for different values of unsteadiness parameter 
(A), biomagnetic interaction parameter (B) and a rational quantity (ϵ). The achieved 
results are compared with previously published work for steady state flow, and they 
seem to be in good agreement. It is found that MHD and FHD interaction parameters 
affect significantly on the velocity, temperature and pressure field. A successful 
completion will bring interesting results for better understanding of the biomagnetic 
fluid flow characteristics and can be beneficial to medical and bioengineering 
applications; particularly for estimating the characteristics of blood flow in stenosed 
arteries. 
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1. INTRODUCTION

Unsteady fluid flow hinges upon time dependent flow 
properties—velocity, pressure, temperature etc. This type of 
fluid flow can be observed in human body due to much 
impulsive body movement, vibration, unintentional abrupt 
body acceleration while riding any vehicle or in various kinds 
of physical competition. In addition, this type of flow might 
occur in a cardiovascular disease—the leading cause of death. 

In 2015, the World Health Organization (WHO) reported 
approximately 17.7 million deaths due to cardiovascular 
diseases, consisting of 31% of all global deaths. 
Approximately 7.4 million of these deceased population 
suffered from coronary heart disease and 6.7 million suffered 
from stroke. A “myocardial infarction” or a heart attack 
happens when the blood flow to some portion of the heart 

muscle is blocked by a formed clot in an artery. Due to 
inadequate blood flow and consequently less oxygen and 
nutrients, the portion of the heart muscle gets damaged. The 
intensity of the damage depends on a variety of factors: the 
size and the location of the clot and the duration of the block. 
Longer duration causes extensive damage to the muscle. There 
are other kinds of diseases which are concerned with 
narrowing of blood vessels such as peripheral artery disease, 
vascular diseases, atherosclerosis etc. In these diseases the 
irregular blood flow might fall prey to unsteadiness in the flow. 
Peripheral artery disease (PAD) is a well-known circulatory 
problem where narrowed arteries lessen the blood flow to 
limbs. As known, arteries carry oxygen and nutrients through 
blood from the heart to every part of the body such as the brain, 
kidneys, intestines, arms, legs, and heart itself. When PAD is 
developed, extremities such as legs do not get sufficient blood 
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flow to match the demand of the body. Two other types of 
diseases that are caused by disruptive blood flow are vascular 
disease and atherosclerosis. Vascular disease is an abnormal 
condition of the blood vessels that occurs where turbulent 
blood flow takes place, e.g., when the direction of blood flow 
in the arteries changes abruptly. Atherosclerosis, on the other 
hand, is the narrowing of the vessels that carry blood to the 
heart. Atherosclerosis occurs due to fat deposit built up in the 
artery walls. Hereby the inevitable usefulness of the study of 
blood flow in a narrow blood vessel. A substantial amount of 
work has been carried out on biological fluids. Among them 
the most important and characteristic one is blood. Also, some 
extensive amounts of works have been done using the effects 
of magnetic field and heat transfer. Needless to say, all these 
studies bear immense potential for biomedical engineering 
applications and clinical medicine. 

Kafoussias and Tzirtzilakis provided mathematical analyses 
that dealt with the flow and heat transfer of a BFD fluid in a 
channel with stretching sheet [1]. Tzitzilakis et al. [2] studied 
turbulent flow of a BFD fluid in a rectangular channel under 
the influence of an applied magnetic field. Andersson and 
Valnes [3] investigated the heated ferrofluid flow over a 
stretching sheet. They performed their study in the presence of 
a magnetic dipole. Under certain conditions, BFD fluid, 
human blood has been observed to exhibit viscoelastic 
behavior [4-6]. Misra and Shit [7] presented mathematical 
models to investigate the biomagnetic viscoelastic fluid flow 
over a stretching sheet and in a channel with stretching walls. 
They fluid was considered to flow under the action of a 
magnetic field that is externally produced by a magnetic dipole. 
In another work, Misra and Shit [8] studied the heated Ferro-
fluid flow over a linear stretching sheet under the influence of 
an applied magnetic field. Further Misra et al. [9] 
mathematically analyzed the steady incompressible second 
grade electrically conducting fluid flow in a channel perfused 
by a uniform transverse magnetic field. There are several 
mathematical studies on the blood flow such as arterial blood 
flow in the presence of body exercise by Mwapinga [10], 
blood flow through a narrow, catheterized artery by Kumar et 
al. [11], arterial blood flow during electromagnetic 
hyperthermia by Misra et al. [12], MHD effects on stenosed 
blood flow by Haik et al. [13], and so on. The mathematical 
analyses of BFD fluid flow have been known to serve several 
important biomedical application-based research such as study 
on various types of magnetically controlled drug carrier 
systems by Ruuge and Rusetski [14], approaches for drug 
delivery to particular destinations within the human body by 
Voltairas et al. [15], and so on. Researchers have performed 
comparative numerical studies of biomagnetic fluid flow over 
the years. Tzirtzilakis and Kafoussias [16] have presented 
comparative study of a BFD fluid flow over a stretching sheet 
under the action of an applied magnetic field and mathematical 
models for biomagnetic fluid flow and applications [17]. Some 
other research works on comparative numerical studies are 
mathematical modeling of BFD that is suitable for describing 
the Newtonian blood flow controlled by an applied magnetic 
field by Tzirtzilakis [18], mathematical models of the blood 
flow in a stenosed channel under the influence of a steady 
localized magnetic field by Tzirtzilakis [19], numerical 
analysis for BFD problems applying stream function vorticity 
by Tzirtzilakis [20], the study of biomagnetic fluid flow under 
the impact of a steady magnetic field in an aneurysmal 

geometry by Tzirtzilakis [21], numerical analysis of BFD fluid 
flow over a stretching sheet in the presence of heat transfer by 
Tzirtzilakis and Tanoudis [22], BFD fluid flow under the 
impact of an applied magnetic field in a curved square duct by 
Papadopoulos and Tzirtzilakis [23], BFD fluid flow under the 
action of a uniform localized magnetic field in a channel by 
Tzirtzilakis and Loukopoulos [24], mathematical model of 
biomagnetic fluid Tzirtzilakis [18]. A substantial amount of 
works has been done on BFD fluid flow on a stretching sheet 
with unsteady velocity such as numerical analysis of unsteady 
stagnation point flow over a stretching or shrinking sheet with 
prescribed heat flux [25-27].  

In this paper, the biofluid is studied under two 
considerations: there is a stretching sheet with unsteady 
velocity and the stretching sheet is under the influence of a 
magnetic dipole. The observed variables/properties of the fluid 
flow are velocity, pressure and temperature. These properties 
depend on dimensionless unsteadiness parameter A and 
biomagnetic parameter B.  

 
 

2. MODELING AND FORMULATION 
 

An unsteady laminar flow of an incompressible, viscous, 
and electrically conducting BFD fluid and with heat transfer is 
assumed to be confined in half space (y > 0) above a sheet. 
This sheet is characterized as impermeable, flat, elastic, 

 
0q. =�

GG
 (1) 

 

uν
x
HMμ

ρ
1

x
p

ρ
1

t
U

u.q
t
u 2

0 �+
w
w

+
w
w

−
w

w
=�+

w
w f

GG  (2) 

 

v
y
HM1

y
p1v.q

t
v 2

0
�Q+

w
w

P
U

+
w
w

U
−=�+

w
w GG  (3) 

 
ρ Cp +

w
w

t
T ρ Cp T.q �

GG + P0T =�
w
w H)(.q

T
M GG K�2T + PM (4) 

 
with boundary conditions: 

 
y = 0: u = Uw, v = 0, T = Tw  

y→∞: u → U∞, T→ Tc, =U+ 2q2/1p constant (5) 

 
and stretched with a velocity Uw (x,t). The velocity of the fluid 
becomes U∞ (x,t), as moved far away from this sheet. Below 
this sheet, at a distance d, there is a magnetic dipole 
engendering a magnetic field that is strong enough to have the 
biomagnetic fluid saturated. As far as the temperature is 
concerned, a fixed temperature Tw is maintained for the sheet. 
At a further distance from the sheet, the fluid retains the Curie 
Temperature Tc, higher than the wall temperature in 
magnitude. Unsteady fluid flow, i.e. time dependent flow as it 
implies by definition, in this study the properties like velocity 
and pressure of biomagnetic fluid flow are considered as time 
dependent functions. An overview of the flow model and co-
ordinate system of biomagnetic fluid flow is depicted in Figure 
1. 

Following the mathematical models, presented by 
Tzirtzilakis and Tanoudis [22] and Suali et al. [25], under the 
above-mentioned assumptions, the governing continuity, 
momentum and heat conservation equations can be written as: 
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In the equations above, the free stream velocity is U∞ 

=ax/(1-Ot); sheet stretching velocity is Uw=bx/(1-Ot) [25]; u is 
the velocity component of the fluid in the x direction and v is 
the velocity component of the fluid in the y direction, and 
�⃗�=(u,v); ν is the kinetic viscosity which is the ratio of dynamic 
viscosity μ and density ρ. 

Moreover, ∇2 is the Laplacian operator in two-dimension 
whereas φ is the dissipation function given by Tzirtzilakis and 
Tanoudis [22]: 

Here the terms 
x
HMμ0 w
w

 
and 

y
HMμ0 w
w

 
in (2) and (3), 

depict the components of the magnetic force per unit volume 
along x and y directions respectively. They are dependent on 
the presence of the magnetic gradient caused by the magnetic 
dipole. These gradients are absent when the magnetic forces 
disappear. On the left-hand side of the thermal energy Eq. (4), 
the third term accounts for heating due to adiabatic 
magnetization. As cited by Andersson and Valnes [3], the 
components Hx, Hy of the magnetic field )H,H()y,x(H yx=

G
, 

are given by the following expressions:  
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In the above equations d is the distance of the magnetic 

dipole situated below the sheet, α is the dimensionless distance, 

defined as D = 
2/1
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d, V refers to the scalar potential 

of the magnetic dipole [3 and, in it γ = α. 

As such, the magnitude HH =
G

 is given by:  
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and the magnetic field gradients are given by: 
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Since it has been assumed that H⃗⃗⃗(x, y) has enough strength 

for saturating the biomagnetic field, the magnetization M is 
usually established by the fluid temperature and the magnetic 
field intensity. Considerably, the variation of magnetization 
with respect to temperature T can be expressed and estimated 
by M = K (Tc − T), an approximation given by ANDERSSON 
and VALNES [3]. Here K is a constant, namely the pyro-
magnetic co-efficient and Tc is the Curie temperature. The 
biofluid becomes no longer magnetized, as soon as it reaches 
the Curie temperature. The reason behind this is the increasing 
intensity H of the magnetic field. However, following the 
consideration by Matsuki et al. [28], it is experimentally 
proven that  

 
M = KH (Tc − T) (13) 

 
To have no further magnetization, in this study, Eq. (13) 

restricts to ignore the biofluid at a further distance from the 
sheet, at Curie temperature Tc.  
 

 

 
 

Figure 1. Geometry of unsteady fluid flow 
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3. SIMILARITY ANALYSIS

In this part, the following non-dimensional variables given 
by Tzirtzilakis and Tanoudis [22] and Suali et al. [25] are 
introduced: 
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\(ξ, η) = ν ξ f (K) (16) 

T(ξ, η) =
wc

c

TT
TT

−
− = T1(K)+ξ 2T2(K) (17) 

P(ξ,η) =
Pa
p  (1 ̶ Ot) =  ̶ P1(η)  ̶ ξ2 P2(η) (18) 

where, ξ(x), η(y), \(ξ, η), P(ξ, η), T(ξ, η) are dimensionless 
co-ordinates in x and y, stream function, pressure, and 
temperature, respectively.  

Substituting Eqns. (11)-(18) into the Eqns. (2)-(4) and then 
equating the coefficients of equal powers of ξ, up to ξ4, an
approach to the transformation is performed in the following 
manner: 

The velocity components are calculated as follows: 
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The boundary value problem (BVP) given by Eqns. (1) ̴ (5) 
then reduces to the following system of coupled nonlinear 
partial differential equations: 
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The transformed boundary conditions assure the form: 

η=0: f=0, f c= =
a
b ϵ, θ1= 1, θ2=0 

η⟶∞: f c⟶1,T1⟶ 0, T2⟶0, P1⟶-P∞, P2⟶0 
(26) 

The physical dimensionless parameters that have appeared 
in the Eqns. (21)-(26) are: 

K
C

Pr pP
= (Prandtl number) 

εT =
)T(T

T
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temperature) 
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S
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2
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2μ

ρwTcT)0,0(KH0μ − (Biomagnetic 
interaction 
parameter) 

Ec =
( )wcp
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TTC
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d (Dimensionless distance) 

ϵ =
a
b (Ratio of stretching 

parameter and the free 
stream velocity parameter) 

A= 
a
O

(Unsteadiness parameter) 

The system of Eqns. (21)-(25), subjected to the boundary 
condition (26), is a seven-parameter non-linear coupled 
system. It describes the unsteady flow of a biomagnetic fluid 
over a stretching sheet under the effect of magnetization.  

4. PARAMETER ESTIMATION

Numerical calculations have been performed for different 
values of dimensionless parameters for the considered 
problem. The solutions are obtained by using MAPLE 
software [29]. The Maple differential equation solver (dsolve) 
has been used to solve the problem. Both step size Δη, and the 
convergence criteria are set to the default values: 0.01 and 10−6, 
respectively. Until convergence is achieved, an automatic 
adjustment of the missing initial derivative is performed by the 
algorithm incorporated in the software. The procedure has 
been well established by its accuracy and robustness in 
numerous publications [30-34]. The asymptotic boundary 
conditions ηmax are substituted by a finite value of 0.6. It 
ensures that all numerical solutions precisely follow the far 
field asymptotic values. The far field boundary conditions in 
(26) are replaced by a finite value of 0.6 for similarity variable
ηmax. Thus, when ηmax = 0.6, =c )6.0(f 0 and P (0.6) = θ (0.6)
= 0. The command dsolve successfully substitutes the BVP by
an initial value problem (IVP).

In relevant to this study, for biomagnetic fluid, blood, the 
density ρ = 1050 kg m-3, viscosity μ = 3.2x10-3 kg m-1s-1, and 
the maximum velocity U∞ = 3.048 x10-2 m s-1 [20, 21]. The 
magnetic dipole is positioned under the stretching sheet at a 
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distance d = 10-4 m. The Curie temperature for blood is 
considered as Tc = 41℃ and the temperature of blood is 
considered as Tw = 37℃ (Tzirtzilakis [21]). Using Tc and Tw, 
the dimensionless temperature Tε is calculated to be 78.5. For 
these temperatures, the measurements for blood are adopted as 
specific heat under constant pressure Cp = 3.9x103 J Kg-1K-1, 
thermal conductivity K = 0.5 J m-1s-1K-1 by Chato [35]. 
Although μ, Cp, K of any fluid including blood depends on 
temperature, the Prandtl number Pr can be a constant. The 
Prandtl number Pr for the above-mentioned values is 
calculated to be 25. Furthermore, for these values Eckert 
number is derived as Ec = 5.96x10-8. Near the magnetic field 
β0 = 4 − 8T, the saturated magnetization value M0 is 40 A m-1 
Tzirtzilakis [21]. For these values, and for β0 = 4T, M0 = 40A 
m-1, d =10-4; the calculated value for B is 164. If the strength 
of the magnetic field at the wall is 8T, the B becomes 336. 
Note that, the value B = 0 corresponds to hydrodynamic flow. 
The dimensionless distance α is taken to be equal to 1 by Sajid 
et al. [36]. The values of unsteadiness parameter A and the 
ratio ϵ are assumed by “trial and error” method. Here, the most 
crucial quantities of physical interest are the local skin friction 
coefficient 

xfC  and local rate of heat transfer coefficient Nux, 

also known as local Nusselt number. These quantities are 
defined by Misra and Shit [8]: 

 

2/Uρ
τ

C 2
w

f
f

−=  (27) 

 

( ) 0ywc
x y

T
TT

xNu
=w

w
−

=  
(28) 

 
where, τw is the wall shear stress defined as: 
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Using Eqns. (14), (15), (17), (19) and (20), the above-

mentioned quantities can be obtained as: 
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where, Rex is the local Reynolds number Rex = 

Q
fxU  [23], 

)0(f cc− is the dimensionless wall shear parameter and
)]0()0([)0( 2

2
1 Tc[+Tc=Tc  is the dimensionless wall heat transfer 

parameter. The flow field is seemingly influenced by the 
values of the biomagnetic interaction parameter B. When B = 
0 (hydrodynamic case), at infinity P2 becomes zero (constant). 
So, it is more suitable to consider replacing the dimensionless 
wall heat transfer parameter )]0(θξ)0(θ[)0(θ 2

2
1 c+c−=c−  by 

0B1

1*

)0(θ
)0(θ

)0(θ
=c

c
= , namely the coefficient of the heat transfer 

rate at the sheet [25]. Also, P2 (0) can be defined as the 
dimensionless wall pressure parameter.  
 
 
5. RESULTS AND DISCUSSION 
 

The numerical results of the present study together with 

comparison to studies in the open literature are presented in 
this section. The transformed Eqns. (21) to (25) with boundary 
condition (26) are numerically solved with the help of an 
efficient Runge – Kutta - Fehlberg 4th order numerical method 
using Maple 14. During the solution process, different values 
of the parameters A, B and ϵ are used. The range of parameter 
values used for numerical computations are: 0 ≤ A ≤ 3, 0 ≤ B 
≤ 328 and 0.5 ≤ ϵ ≤ 2.2. Figures 2, 3 represents the result of a 
comparison between the Maple and finite difference precision 
numerical solutions for a steady state case with B = 0, A = 0, 
ϵ = 1, Pr = 7, Ec = 0, α = 1, Tε=2 by setting ηmax = 6 and 0.9. 
The velocity and pressure profiles for the steady and 
hydrodynamic case with B = 0 are in excellent agreement with 
those obtained by Tzirtzilakis [8]. 

 

 
 

Figure 2. Comparison of dimensionless velocity f c(η) 
 

 
 

Figure 3. Comparison of dimensionless pressure P2 (η) 
 

Figures 4, 5 illustrates the velocity profiles f c(η) for various 
B, A and ϵ. Both are plotted against η. Figure 4 reveals the 
effects of A and B on the velocity profile and it can be inferred 
that under the influence of a stronger magnetic field, the fluid 
velocity decreases. In addition, the opposite results occur for 
increasing unsteadiness parameter for the case B = 0, 164 and 
328. Note that for B = 164, the velocity increases near the wall 
and decreases far from the wall which cross one point 
occurring at a value of η = 0.3. When these velocity profiles 
are observed, it is noticed from Figure 4 that for B = 164 and 
A = 0.35, velocity starting from a boundary value f c (0) = 1 
tends to decrease to f c (0.22) = − 0.106384 and then increase 
to the boundary value f c (0.6) = 1. Similarly for B = 164 and 
A = 3, this lowest velocity is: f c (0.29) = 0.0137628; for B = 
328 and A = 0.35, f c (0.28) = − 1.30197; for B = 328 and A = 
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3, f c (0.3) = − 0.94128. These velocity profiles happen to be 
depicted as parabolic trajectories. In case of the steady case (A 
= 0), it is noticed in Figure 4 that at some point the 
dimensionless velocity coincides with the unsteady one (A ≠ 
0) for biomagnetic parameter B = 164 (biomagnetic field 
strength 4T). For instance: when A = 0.35 (unsteady) f c(η) 
coincides with the steady profile at approximately (0.154, − 
0.0319) and for A = 3 at (0.296, 0.0152). Boundary layer 
thickness is therefore higher with B = 328. Figure 5 shows that 
the velocity profile increases with increasing values of ϵ from 
the surface to the fluid further away from the surface in two 
sets of numerical solutions. For B = 164, starting from f c(0) = 
0.5, velocity decreases to f c(0.21) = − 0.480572 and from f c(0) 
= 2.2, it decreases to f c(0.3) = 0.887956; then increases to the 
boundary value f c (0.6) = 1. Similarly for B = 328, these 
decreased velocities are: for B = 328, f c(0.27) = − 1.599639 
and f c(0.24) = − 0.28782 starting from f c(0) = 0.5 and 2.2 
respectively. 
 

 
 

Figure 4. Variation of dimensionless velocity f c(η) for 
different B and A 

 

 
 

Figure 5. Variation of dimensionless velocity f c(η) for 
different ϵ and A 

 
Figures 4, 5 illustrates the velocity profiles f c(η) for various 

B, A and ϵ. Both are plotted against η. Figure 4 reveals the 
effects of A and B on the velocity profile and it can be inferred 
that under the influence of a stronger magnetic field, the fluid 
velocity decreases. In addition, the opposite results occur for 
increasing unsteadiness parameter for the case B = 0, 164 and 
328. Note that for B = 164, the velocity increases near the wall 

and decreases far from the wall which cross one point 
occurring at a value of η = 0.3. When these velocity profiles 
are observed, it is noticed from Figure 4 that for B = 164 and 
A = 0.35, velocity starting from a boundary value f c (0) = 1 
tends to decrease to f c (0.22) = − 0.106384 and then increase 
to the boundary value f c (0.6) = 1. Similarly for B = 164 and 
A = 3, this lowest velocity is: f c (0.29) = 0.0137628; for B = 
328 and A = 0.35, f c (0.28) = − 1.30197; for B = 328 and A = 
3, f c (0.3) = − 0.94128. These velocity profiles happen to be 
depicted as parabolic trajectories. In case of the steady case (A 
= 0), it is noticed in Figure 4 that at some point the 
dimensionless velocity coincides with the unsteady one (A ≠ 
0) for biomagnetic parameter B = 164 (biomagnetic field 
strength 4T). For instance: when A = 0.35 (unsteady) f c(η) 
coincides with the steady profile at approximately (0.154, − 
0.0319) and for A = 3 at (0.296, 0.0152). Boundary layer 
thickness is therefore higher with B = 328. Figure 5 shows that 
the velocity profile increases with increasing values of ϵ from 
the surface to the fluid further away from the surface in two 
sets of numerical solutions. For B = 164, starting from f c(0) = 
0.5, velocity decreases to f c(0.21) = − 0.480572 and from f c(0) 
= 2.2, it decreases to f c(0.3) = 0.887956; then increases to the 
boundary value f c (0.6) = 1. Similarly for B = 328, these 
decreased velocities are: for B = 328, f c(0.27) = − 1.599639 
and f c(0.24) = − 0.28782 starting from f c(0) = 0.5 and 2.2 
respectively. 
 

 
 

Figure 6. Variation of dimensionless pressure P2 (η) for 
different B and A 

 

 
 

Figure 7. Variation of dimensionless pressure P2 (η) for 
different ϵ and B 

 
Figures 6 and 7 depict the effects of unsteadiness parameter 

A and ϵ with the change of biomagnetic parameter B on the 
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dimensionless pressure P2 (η). For hydrodynamic (B = 0) case 
(Figure 5) the flow coincides with the origin describing that B 
has no significant effect on pressure. With increase in B, 
dimensionless pressure increases. Also Figure 6, implicates 
that this increment in greater for larger values of unsteadiness 
parameter A. From Figure 7, it is evident that as ϵ increases, 
P2 (η) decreases. As the pattern of any of the graphs in Figures 
6 and 7 is looked at, it is easily come to sight that pressure 
decreases gradually from a highest value and as η increases, it 
approaches to the boundary asymptotically. 

In Figures 8 and 9 temperature profiles are plotted against η 
in the form of dimensionless temperature θ1 (η) for various 
values of biomagnetic parameter B, unsteadiness parameter A 
and ϵ. As to the observation, when the biomagnetic interaction 
parameter B decreases, the dimensionless temperature θ1 (η) 
decreases. Recall that, B is the strength of the magnetic field 
generated by the magnetic dipole that is placed under the 
stretching sheet. Also, from Figure 8 it is evident that with 
increasing unsteadiness parameter A, the temperature 
becomes increased. As the pattern of the graphs of the 
dimensionless temperature is concerned, it is observed that for 
the hydrodynamic state (B = 0) when A < 2 and ϵ ≥ 1 the 
temperature drops from a highest value and approaches the 
boundary in an asymptotic manner. An interesting 
phenomenon is observed when B = 0, A= 2 and when B = 164, 
A = 0.35. In both the cases the dimensionless temperature θ1 
(η) decreases almost linearly. From Figure 9 it is evident that, 
temperature is decrescent from the higher temperature region 
near the wall to the region away from the wall for increasing 
values of ϵ. 
 

 
 

Figure 8. Variation of dimensionless temperature θ1 (η) for 
different B and A 

 

 
 

Figure 9. Variation of dimensionless temperature θ1 (η) for 
different ϵ and B 
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Figure 10. Variation of the wall shear parameter − f cc(0) 
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Figure 11. Variation of wall pressure parameter P2 (0) 
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Figure 12. Variation of the wall heat transfer parameter θ*(0) 
 

Figures 10-12 graphically represents the results of the 
similarity solutions for the wall heat transfer. The results are 
shown for A as a function of biomagnetic parameter B. From 
Figure 10, as B increases in the blood, the wall shear increases 
asymptotically. The effect of A on the dimensionless wall 
shear is also investigated. It is found that wall shear decreases 
with the parameter A. Figure 11 shows that as the parameter B 
increases, the wall pressure increases. This effect can also be 
seen on the wall pressure as A increases. For A = 2, 3 wall 
shear parameter and wall pressure parameter increases almost 
linearly with respect to B, whereas for A = 0, 0.1, 0.35 wall 
shear parameter shows nonlinear increment with B. From 
Figure 12, we can see that for A = 0 and 0.1, θ*(0) vary almost 
linearly with respect to the increase of B. As we increase the 
value of A other than the above θ*(0) represents nonlinear 
profile. This is due to the transport of blood from higher 
temperature near the wall to the lower temperature far away 
from the wall.  
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6. CONCLUDING REMARKS 
 

In this paper, a numerical study has been carried out for the 
two-dimensional problem of the flow of a BFD fluid over a 
stretching sheet with heat transfer and magnetization. A 
similarity transformation has been employed for the reduction 
of the partial differential equations into nonlinear coupled 
ordinary differential equations. The effects of the 
dimensionless parameters A, ϵ and B on the fluid flow have 
been discussed here and the numerical results obtained here 
have been compared with the previously published results. All 
data have been acquired by using a dsolve routine in MAPLE 
software. However, significant results that have been found in 
this study are summarized as follows: 

The change in velocity ( )ηf c  with the change in 
unsteadiness parameter A is dependent upon the biomagnetic 
interaction parameter B. Velocity decreases with increasing B 
and increases with increasing A. But for B = 164 this 
phenomena get reversed. 

Pressure P2 (η) increases with increasing B and this 
increment is greater for increasing A. On the other hand, P2 (η) 
decreases with increasing ϵ. 

Temperature θ1 (η) increases with the increment of B and A, 
whereas it decreases with the increment of ϵ. 

The variations of wall shear parameter − f cc(0) and wall 
pressure parameter P2 (0) for larger values of unsteadiness 
parameter A and coefficient of wall heat transfer rate θ*(0) for 
smaller values of A with biomagnetic interaction parameter B 
are almost linear. 

− f cc(0) and P2 (0) increases with B, θ*(0) decreases as B 
moves further away from its hydrodynamic state (B = 0). 
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