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Abstract

In this paper, the laminar, incompressible and viscous flow of a biomag-
netic fluid containing Fe3O4 magnetic particles, through a two dimensional
stretched cylinder is numerically studied in the presence of a magnetic dipole.
The extended formulation of Biomagnetic Fluid Dynamics (BFD) which
involves the principles of MagnetoHydroDynamic (MHD) and FerroHydro-
Dynamic (FHD) is adopted. The pressure terms are also taken consideration.
The physical problem which is described by a coupled system of partial
differential equations along with corresponding boundary conditions is con-
verted to a coupled system of nonlinear ordinary differential equations subject
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to analogous boundary conditions utilizing similarity approach. The numer-
ical solution is obtained by using an efficient technique which is based on
a common finite difference method with central differencing, a tridigonal
matrix manipulation and an iterative procedure. For verification proposes a
comparison with previously published results is also made. The numerous
results concerning the axial velocity, temperature, pressure, skin friction
coefficient, rate of heat transfer and wall pressure parameter are presented
for various values of the parameters. The axial velocity is decreased as the
ferromagnetic number increases, temperature is enhanced with increasing
values of the magnetic parameter.

Keywords: BFD, blood, magnetic particles, stretched cylinder, magnetic
dipole, finite difference method.

List of Symbols

(u, v) Velocity components [m/s]
(x, r) Components of the cartesian system [m]
a Radius of the cylinder [m]
c Distance between the magnetic dipole to sheet [m]
l Characteristic length of the cylinder [m]
u0 Referred velocity [m/s]
H Magnetic field of strength [A/m]
T Fluid temperature [K]
Tw Temperature of the sheet [K]
Tc Curie temperature (Fluid temperature far away from the

sheet) [K]
M1 Fluid magnetization [A/m]
M Magnetic field parameter
B0 Mean value of magnetic field strength
Uw Stretched velocity [m/s]
Cp Specific heat at constant pressure [J Kg−1 K−1]
P Dimensionless pressure
~q = (u, v) Velocity field
f ′ Dimensionless velocity component in x-direction
γ Strength of magnetic field at the source position.
K Pyromagnetic coefficient [K−1]
D Curvature parameter
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Pr Prandtl number
Nux Rate of heat transfer
Cf Skin friction coefficient
Re Local Reynolds number
Greek symbols:
η, ξ Dimensionless coordinates
θ1, θ2 Dimensionless temperature
θ′(0) Wall heat transfer gradient
ψ Stream function
ρ Fluid density [Kg/m3]
µ Dynamic viscosity [Kg/ms]
µ0 Magnetic fluid permeability [NA−2]
υ Kinematical viscosity [m2/s]
σ Electrical conductivity [S/m]
ε1 Convergence criteria
ε Dimensionless Curie temperature
λ Viscous dissipation parameter
β Ferromagnetic interaction parameter
α Dimensionless distance
κ Thermal conductivity [J/m s K]
τw Wall shear stress
List of abbreviations
BFD Biomagnetic fluid dynamic
FHD Ferrohydrodynamic
MHD Magnetohydrodynamic
PDE Partial differential equation
ODE Ordinary differential equation
Subscripts symbol
( )mf Indicates magnetic fluid
( )f Represent base fluid
( )s Means magnetic particles (solid particles)

Introduction

The studies of biological fluid under the action of an applied magnetic field
are known as biomagnetic fluid dynamics shortly BFD. One of the common
examples of biomagnetic fluid is blood. Over the last few decades the applica-
tion of nanoparticles especially magnetic nanoparticles adding with different
type of biological fluid (blood) may open up a great interest of researchers due
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to their wide range of applications such as in magnetic resonance imaging
(MRI), in cancer therapy (hyperthermia), magnetic drug and gene delivery,
magnetic separation [1–11] etc. Among all other nanoparticles, Iron oxide
(magnetite) i.e. Fe3O4 has been plays a vital role in biomedical application
because of their biocompatibility, biodegradability, facile synthesis, and ease
that provides abundant functionalized for specific application.

Basically, BFD is related with principles of magnetohydrodynamic
(MHD) and ferrohydrodynamic (FHD). Where, according to the model
of FHD the fluids are assumed to be electrically non-conducting and the
fluid flow is influenced under magnetization arising due to the presence of
fluid magnetization. On the other hand, according to MHD the fluids are
considered electrically conducting and the influence of magnetization or
polarization is ignored. The first BFD model developed by Haik et al. [12] and
it’s based on the principle of FHD, where fluids are considered Newtonian
and electrically non-conducting. In their study they found that the magneti-
zation of the fluid has a significant impact on the flow under the influence of
high gradient magnetic fields. Considering the concept of FHD and MHD,
Tzirtzilakis [13] expanded BFD model in order to analyze the influence of
magnetic field on blood flow where blood is assumed electrically conducting
fluid. Recently, Murtaza et al. [14] studied extensively the BFD model which
consist both principles of MHD and FHD under the influence of electrical
conductivity and magnetization of blood and they found that the effect of
FHD in the boundary layer stretching sheet flow is equally significant to that
of MHD. Considering the viscoelastic property of the fluid, Misra et al. [15]
examined the biomagnetic fluid also over a stretching sheet. The study of
biomagnetic fluid under various conditions examined by various researchers
like as Murtaza et al. [16, 17], Misra et al. [18], Tzirtzilakis et al. [19, 20] etc.

In 1995, Choi [21] was the first who deliver the idea of nanofluid
where nanoparticles with higher thermal conductivity are used with base
fluid like water, oil etc. to enhance their properties. The effect of magnetic
field on nanofluid flow over a nonlinear stretching sheet studied by Misra
et al. [22] and they found that velocity gradient of the fluid significantly
influenced in presence of external magnetic field. Neuringer [23] studied
the effects of magnetic fields and thermal gradient in a saturated ferro-fluid,
where Thomson heat and Fourier heat conduction impact on magneto-
thermo-elastic porous medium explored by Elsayed et al. [24]. The impact
of electrohydrodynamics nanoparticles Fe3O4 on ethylene glycol nanofluid
in a sinusoidal enclosure examined by Sheikholeslami et al. [25]. Entropy
generation in steady MHD flow due to a rotating porous disk in water based
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nanofluid considering the Cu, CuO, Al2O3 nanoparticles studied by Rashidi
et al. [26]. The wide range application of BFD boundary layer flow and heat
transfer through a stretched cylinder in presence of applied magnetic field
has gained serious attention from the researchers. Ishak et al. [27] studied
the laminar boundary layer flow along a stretching cylinder where Bachok
et al. [28] conducted the study of heat transfer with prescribed heat flux
through stretching cylinder. MHD boundary layer slip flow through stretched
cylinder examined by Mukhopadhyay [29]. Qasim et al. [30] investigated
the MHD Fe3O4-H2O and Al2O3-H2O nanofluid over a stretching cylinder
with prescribed heat flux and numerical calculations carried out by using
a shooting method. They found that heat transfer rate is increased with
the increment of the values of the magnetic nanoparticles volume fraction.
Nadeem et al. [31] prescribed the characteristics of non-Newtonian fluid
along a stretching cylinder in the presence of magnetic dipole. The effect
of magnetic dipole on Newtonian ferrofluid through a stretchable cylinder
studied by Tahir et al. [32] and they concluded that rate of heat transfer
increased with augment of curvature parameter. Most of the above studies are
studied on stretched cylinder either considering principles of MHD or FHD
or both, where fluid is assumed as electrically conducting or non-conducting
and water is considered as a based fluid. To our knowledge, the blood flow
containing magnetic nanoparticles and considering the electrical conductivity
along with the effect of polarization/magnetization has not studied widely yet.

The ultimate purpose of the study is to seek the influence of blood
flow and heat transfer with magnetic particles (Fe3O4) through stretched
cylinder in the presence of a magnetic dipole, where blood is considered as a
Newtonian and electrical conducting fluid. Our base studies are [30–32, 41]
and we apply the considerations and the extension on the mathematical model
in an analogous manner as the study [14]. Thus, both principles of FHD and
MHD are adopted in this model and consequently pressure term is also taken
into consideration. The momentum equations and the energy equation are
made dimensionless by utilizing similarity transformations. The numerical
solution is carried out by applying an efficient numerical technique which
is based on the common finite difference method with central differencing,
a tridiagonal matrix manipulation and an iterative procedure. The effect of
pertinent parameters on velocity, temperature and pressure profile as well as
wall heat transfer, skin friction coefficient and pressure gradient are examined
and discussed in detail. It is hoped that this study will contribute to the
understanding of basic mechanisms utilized for applications in biomedicine,
MRI and cancer treatment.
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Mathematical Flow Model

We consider an electrically conducting biomagnetic fluid (blood) containing
magnetic particles like Fe3O4 the flow of which is considered to be steady,
viscous, axis symmetric and incompressible passing through a stretchable
cylinder of radius a. The schematic system of flow is demonstrated at Figure 1
where x axis is along and r axis is normal to the cylinder and assumed that
cylinder is stretched along x direction with velocity Uw = u0x

l , where l is
the characteristics length and u0 referred to velocity. The temperature at the
surface and ambient fluid temperature is Tw and Tc, respectively where Tw <
Tc. Also assume that blood flow is subjected to a magnetic field of strengthH
that produced a magnetic dipole, which lies on the center on r axis and placed
at below the surface at distance c. However, the Lorentz force which is due to
the electrical conductivity of blood, is not negligible in the flow region where
the magnetic field is applied and should be taken under consideration.

Under the above considerations we extend the idea of [30–32, 41] and
here the continuity, momentum and energy equations are in following form:

Continuity equation

∂

∂x
(ru) +

∂

∂r
(rv) = 0 (1)

       r    v Magnetic particles 

cT                      u         Momentum boundary layer  

                                         Thermal boundary layer    Blood cell 
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       a2  wT   x
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0B

Figure 1 Schematic diagram of flow problem.
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Momentum equations

u
∂u

∂x
+ v

∂u

∂r
= − 1

ρmf

∂p

∂x
+
µmf
ρmf

(
1

r

∂u

∂r
+
∂2u

∂r2
+
∂2u

∂x2

)
−
σmf
ρmf

B2
0u+

1

ρmf
µ0M1

∂H

∂x
(2)

u
∂v

∂x
+ v

∂v

∂r
= − 1

ρmf

∂p

∂r
+
µmf
ρmf

(
1

r

∂v

∂r
+
∂2v

∂r2
+
∂2v

∂x2
− v

r2

)
(3)

Energy equation

(ρCp)mf

(
u
∂T

∂x
+ v

∂T

∂r

)
+ µ0T

∂M1

∂T

(
u
∂H

∂x
+ v

∂H

∂r

)
= κmf

(
1

r

∂T

∂r
+
∂2T

∂r2
+
∂2T

∂x2

)
(4)

With associated boundary conditions

u = Uw =
u0x

l
, v = 0, T = Tw at r = a (5)

u→ 0, T → Tc, P +
1

2
ρq2 = constant at r →∞ (6)

Where, u and v are the velocity component along x and r axis, respec-
tively (~q = (u, v)). Also P, ρ, µ, σ, µ0,M1, H,Cp, κ denotes the biomagnetic
fluid pressure, density, dynamic viscosity, electrical conductivity, magnetic
permeability, magnetization, magnetic field of strength, specific heat at con-
stant pressure and thermal conductivity respectively. B0 is the mean value of
steady magnetic field of strength inside the flow field. The symbol ( )mf ,
represents the magnetic fluid. In Equation (2), the term µ0M1

∂H1
∂x indi-

cates the components of ferromagnetic body force per unit; while the term
µ0T

∂M1
∂T (u∂H∂x + v ∂H∂r ) in Equation (4) accounts for heating due to adiabatic

magnetization. These terms are well known as FHD. In Equation (2) the term
σmf

ρmf
B2

0u represents force per unit volume towards x-direction and arises due
to the electrical conductivity of the fluid (blood). These term arise because of
MHD.

Considering the studies of [23] and [32], the magnetic dipole gives rise
to a magnetic field sufficiently strong to saturate the biofluid and its scalar
potential is given by

V =
α

2π

x

x2 + (r + c)2
(7)
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Here, α =
√

u0
υf
c2 is a dimensionless distance and α = γ whereγ

indicates the strength of magnetic field at the source position.
Therefore, the magnitude of the magnetic field of intensity i.e. ‖ ~H‖ = H

is given by

‖ ~H‖ = H(x, r) =
√
H2
x +H2

r =
γ

2π

x2

x2 + (r + c)2
(8)

And Hx, Hr are the components of the magnetic field ~H = (Hx, Hr)
given by

Hx(x, r) = −∂V
∂x

=
γ

2π

x2 − (r + c)2

(x2 + (r + c)2)2
(9)

Hr(x, r) = −∂V
∂r

=
γ

2π

2x(r + c)

(x2 + (r + c)2)2
(10)

After calculations of (9) and (10), the component takes the form

∂H

∂x
= − γ

2π

2x

(r + c)4
(11)

∂H

∂r
= − γ

2π

(
−2

(r + c)3
+

4x2

(r + c)5

)
(12)

Thus, the magnetic field intensity H can be expressed as

H(x, r) =
γ

2π

(
1

(r + c)2
− x2

(r + c)4

)
(13)

The variation of magnetization M1 with temperature T is defined by a
linear relation [32]

M1 = K(Tc − T ) (14)

Where, K represents the pyromagnetic coefficient and Tc is the Curie
temperature.

The thermo-physical factors of magnetic particles are defined as [30]

µmf = µf (1− φ)−2.5, (ρCp)mf = (1− φ)(ρCp)f + φ(ρCp)s,

ρmf = (1− φ)ρf + φρs,

σmf = (1− φ)σf + φσs,
κmf
κf

=
(κs + 2κf )− 2φ(κf − κs)
(κs + 2κf ) + φ(κf − κs)

(15)
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Here, φ indicates the volume fraction where, φ = 0 corresponds to regular
fluid. Note that ( )f and ( )s signifies the base fluid (blood) and magnetic
particles (Fe3O4).

Solution Procedure

For the implementation of the numerical solution we introduce the similar-
ity transformation in order to make the momentum and energy equations
dimensionless [32]

η(r) =
r2 − a2

2a

(
Uw
υfx

) 1
2

=
r2 − a2

2a

(
u0
υf l

) 1
2

ξ (x) =

(
u0
υf l

) 1
2

x, ψ (ξ, η) =
(u0υf

l

) 1
2
a x f(η)

θ(ξ, η) =
Tc − T
Tc − Tw

= θ1(η) + ξ2θ2(η)

P (ξ, η) =
P
u0µf
l

= −[P1(η) + ξ2P2(η)]



(16)

Where, ψ(ξ, η), θ(ξ, η) and P (ξ, η) are the stream function, the dimen-
sionless temperature and pressure respectively. The continuity equation is
satisfied considering the velocity components as follows

u =
1

r

∂ψ

∂r

v = −1

r

∂ψ

∂x

(17)

We substitute Equations (11) to (17) into Equations (2) to (4) and then
equating the coefficients of equal power of ξ up toξ2, we get

(1 + 2ηD)f ′′′ + 2Df ′′ − (1− φ)2.5
(

1− φ+ φ
σs
σf

)
Mf ′

− (1− φ)2.5
(

1− φ+ φ
ρs
ρf

)
(f ′2 − ff ′′)

+ 2(1− φ)2.5P2 − (1− φ)2.5
2βθ1

(η + α)4
= 0 (18)
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(1 + 2ηD)2(1− φ)2.5P ′1 − (1 + 2ηD)2f ′′

+ (1− φ)2.5
(

1− φ+ φ
ρs
ρf

)
(Df2 − (1 + 2ηD)ff ′) = 0 (19)

(1 + 2ηD)2(1− φ)2.5P ′2 = 0 (20)

(1 + 2ηD)θ′′1 + 2θ2 + 2Dθ′1

+
κf
κmf

((
1− φ+ φ

(ρCp)s
(ρCp)f

)
Pr fθ′1 +

2βλf(θ1 − ε)
(η + α)3

)
= 0

(21)

(1 + 2ηD)θ′′2 + 2Dθ′2

+
κf
κmf


(

1− φ+ φ
(ρCp)s
(ρCp)f

)
Pr
(
fθ′2 − 2f ′θ2

)
−2βλ(θ1 − ε)

[
f ′

(η + α)4
+

2f

(η + α)5

]
+

2βλ f θ2
(η + α)3

 = 0

(22)

And the boundary conditions (5) and (6) take the following form

f = 0, f ′ = 1, θ1 = 1, θ2 = 0 at η = 0 (23)

f ′ → 0, θ1 → 0, θ2 → 0, P1 → −P∞, P2 → 0 at η →∞ (24)

Here the dimensionless parameters that appear in the above equations are
defined as

Ferromagnetic interaction parameter β = γ
2π

µ0K(Tc−Tw)ρf
µ2f

; Magnetic

field parameterM =
σfB

2
0 l

u0ρf
; viscous dissipation parameter λ =

u0µ2f
lkf (Tc−Tw)ρf

;

Curie temperature ε = Tc
Tc−Tw ; Curvature parameter D = (

lυf
u0a2

)
1
2 ;

Dimensionless distance α = (u0υf )
1
2 c; Prandtl number Pr =

(µCp)f
κf

.

Numerical Technique

In this section we describe the numerical solution of the problem where we
apply an approximate technique that has better stability characteristics than a
classical Runge-Kutta combined with a shooting method, is simple, accurate
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and efficient. The detail study of this technique can be found in [14, 40]. The
most important features of this technique are:

(1) It is based on the common finite difference method with central
differencing.

(2) On a tridiagonal matrix manipulation, and
(3) On an iterative procedure

According [14, 40], we can write the momentum Equation (19) is
following way:

(1 + 2ηD)f ′′′ + 2D f ′′ − (1− φ)2.5(
(1− φ+ φ

σs
σf

)Mf ′ +

(
1− φ+ φ

ρs
ρf

)
f ′2
)

+ (1− φ)2.5(
1− φ+ φ

ρs
ρf

)
ff ′′ = (1− φ)2.5

2βθ1
(η + α)4

− 2(1− φ)2.5P2

(25)

By putting y(x) = f ′(η), the Equation (25) can be considered as a second
order linear differential equation and provided that P2 and f(η) are assumed
to be known functions.

In this case Equation (25) can be written as

(1 + 2ηD)(f ′)′′ +

(
2 D + (1− φ)2.5

(
1− φ+ φ

ρs
ρf

)
f

)
(f ′)′

−
(

(1− φ)2.5
(

1− φ+ φ
σs
σf

)
M + (1− φ)2.5

(
1− φ+ φ

ρs
ρf

)
f ′
)

f ′ = (1− φ)2.5
2βθ1

(η + α)4
− 2(1− φ)2.5P2

Which takes the form

P (x)y′′(x) + Q(x)y′(x) + R(x)y(x) = S(x) (26)

Where,

P (x) = 1 + 2η D, Q(x) = 2 D − (1− φ)2.5
(

1− φ+ φ
ρs
ρf

)
f,

R(x) = −(1− φ)2.5
(

1− φ+ φ
σs
σf

)
M
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− (1− φ)2.5
(

1− φ+ φ
ρs
ρf

)
f ′,

S(x) = (1− φ)2.5
2βθ1

(η + α)4
− 2(1− φ)2.5P2

Now Equation (26) can be solved by a common finite difference method,
based on central differencing and tridiagonal matrix manipulation, before
starting solution procedure, it’s essential to give an initial guess for f ′(η)
and P2(η) between η = 0 and η = η∞(η → ∞) which satisfy the bound-
ary conditions of (23) and (24). For this we assume as initial distributions
that,

f ′(η) = 1− η

η∞
, θ1 = 1− η

η∞
, θ2 =

1

2

(
η

η∞

)(
1− η

η∞

)
The f(η) distribution is obtained by the integration from f ′(η) curve.

The next step is to consider f, P2 and θ1 known and to determine a new
estimation for f ′(η), (f ′new) by solving the nonlinear Equation (26) using the
above method. The f(η) distribution is updated by integrating the new f ′(η)
curves. These new profiles f and f ′ are then used to new inputs and so on.
In this way the momentum Equation (25) and consequently (18) are solved
iteratively until convergence up to a small quantity ε1 is attained.

Following the same algorithm, Equations (21) and (22) with boundary
conditions (23) and (24) are solved after f(η) is obtained.

Now energy Equations (21) and (22) can be written in the form of
Equation (26) that is

(1 + 2ηD)θ′′1 +

(
2 D +

κf
κmf

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
Prf

)
θ′1

−
κf
κmf

2βλf

(η + α)3
θ1 =

κf
κmf

2βλ f ε

(η + α)3
− 2θ2 (27)

By setting y(x) = θ1(η) in Equation (28), we get

P (x)y′′(x) + Q(x)y′(x) + R(x)y(x) = S(x) (28)

Where,

P (x) = 1 + 2ηD, Q(x)
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= 2D +
κf
κmf

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
Prf,

R(x) = −
κf
κmf

2βλf

(η + α)3
,

S(x) =
κf
κmf

2βλfε

(η + α)3
− 2θ2

Similarly Equation (23) can be written as

(1 + 2ηD)θ′′2 +

(
2D +

κf
κmf

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
Prf

)
θ′2

+
κf
κmf

(
2βλ f θ2
(η + α)3

−
(

1− φ+ φ
(ρCp)s
(ρCp)f

)
2Prf ′

)
θ2

=
κf
κmf

2βλ(θ1 − ε)
[

f ′

(η + α)4
+

2f

(η + α)5

]
(29)

Again setting y(x) = θ2(η), Equation (30) are reduced in a second order
differential equation and of the following form

P (x)y′′(x) + Q(x)y′(x) + R(x)y(x) = S(x) (30)

Where,

P (x) = 1 + 2η D, Q(x) = 2 D +
κf
κmf

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
Prf,

R(x) =
κf
κmf

(
2βλf θ2
(η + α)3

−
(

1− φ+ φ
(ρCp)s
(ρCp)f

)
2Prf ′

)
,

S(x) =
κf
κmf

2βλ(θ1 − ε)
[

f ′

(η + α)4
+

2f

(η + α)5

]
In this way we obtain θ1 and θ2 until the convergence up to a small

quantity ε1 is attained. Then now we obtain new estimates of P1 and P2 from
Equations (19) and (20), respectively, which are already first order linear
differential equation. This process is continuing until the trial convergence
of the solution is attained. For the numerical solution we apply a step size
h = ∆η = 0.01, ηmin = 0 and ηmax = 1; and the solution is convergent with
an approximation of 10−3.
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Validation

Before proceeding to the numerical calculation, it’s necessary to check the
accuracy of the numerical technique and for that we compared our present
numerical results with those published in the study [32]. An indicative
graphical representation of the comparison is given at Figures 2 and 3 where
our results has been found in good agreement with those obtained in [32].
Furthermore, we also compared the rate of heat transfer for different values
of Prandtl number Pr. These results are presented at Table 1 and also verify
the good agreement with the results obtained in [32].

Results and Discussion

In this section we discuss the results presented graphically with respect of the
effect of the dimensionless parameters for velocity, temperature, pressure,
skin friction coefficient, rate of heat transfer and pressure gradient. In order
to attain this, we need to put some realistic values which published previously
and relative to this paper. So, we assume the fluid is blood and the magnetic

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f '( )

Pr =1

= 0.01, = 2, = 1, = 1, S1 = 0.1, 
  Pm =1.5, D =1 

 Reference [32]
 M = P = = 0, f = mf = 1(Present study)

Figure 2 Comparison of velocity profile for M = P = φ = 0, κf = κmf = 1.
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= 0.01, = 2, = 1, = 1, S1 =0.1, 
  Pm =1.5, D =1 
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 M = P = = 0, f = mf = 1(Present study)

Figure 3 Comparison of Temperature profile for M = P = φ = 0, κf = κmf = 1.

Table 1 Comparison of the rate of heat transfer with [32] for various values of Pr when
M = P = φ = 0, κf = κmf = 1

Pr Present Result Tahir et al. [32] |Error|
1 0.5131 0.5132769 0.0001769
1.3 0.5858 0.5982321 0.0182321
1.9 0.6324 0.6312902 0.0011098
4 0.8807 0.8892303 0.0085303
10 1.801 1.8002134 0.0007866

Table 2 Thermo-physical values of blood and Fe3O4

Physical Properties Cp(jkg
−1K−1) ρ(kgm−3) σ(sm−1) κ(Wm−1K−1)

Blood 3.9× 103 1050 0.8 0.5
Fe3O4 670 5180 0.74× 106 9.7

particles are Fe3O4, and following the literature [19, 20, 33–36] we adopt the
values of properties of blood and Fe3O4 given in Table 2.

Whereas human body temperature Tw = 37◦C [20], body Curie
temperature is Tc = 41◦C. For above values dimensionless temperature
ε = 78.5 [14], viscous dissipation number λ = 6.4 × 10−14 [14] and
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Figure 4 Axial velocity profile f ′(η) for FHD, MHD and BFD.

dimensionless distance α = 1 [19]. For numerical calculation the values
of leading parameters Prandtl number Pr = 17, 21, 23, 25 [19], mag-
netic parameter M = 0.1, 0.5, 0.5, 0.7, 1, 5, 10 [37, 38], volume fraction
φ = 0.0, 0.0001, 0.001, 0.005, 0.1, 0.15, 0.2 [39], curvature parameter D =
0.1, 0.2, 0.5, 1, 1.5, 2 [31, 32] and ferromagnetic interaction parameter β =
0, 5, 10 [14]. Note down whenM = 0, β 6= 0 indicates to pure ferrohydrody-
namic flow (FHD), M 6= 0, β = 0 indicates to pure magnetohydrodynamic
flow (MHD) and M 6= 0, β 6= 0 indicates to mixed FHD and MHD flow
which appears in the biomagnetic fluid flow (BFD) [13].

The influence of magnetic particles volume fraction on FHD, MHD and
BFD in axial velocity, pressure and temperature profile can be observed from
Figures 4 to 7. Where Figure 4 indicate that the decrement of the axial
velocity for BFD is greater than FHD and MHD. It also clears that when
we added magnetic particles with base fluid like blood, the decrement of
BFD is more pronounced than pure BFD fluid. From the pressure profile
(see Figure 5) we see that in case of BFD pressure is more comfortable to
control rather than FHD and MHD. On the other hand, from the temperature
profiles (see Figures 6 and 7) we observed that in case of BFD, temperature
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Figure 5 Pressure profile P1(η) for FHD, MHD and BFD.
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Figure 7 Temperature profile θ2(η) for FHD, MHD and BFD.

is increased much better than FHD and MHD cases under the influence of
magnetic particles. Moreover, in the absence of magnetic particles, MHD is
increased much effectively than BFD and FHD cases.

Figures 8 to 11 demonstrate the effect of ferromagnetic number on the
axial velocity, pressure and temperature profile. From the pressure profile it
is evident that as β increases P1(η) is effectively reduced in the ferrohydro-
dynamic case especially for small values of η. Figures 10 to 11 show that the
temperature profiles (see Figures 10 and 11) increase with raising values of
β and its augment noticed when β > 0. The axial velocity f ′(η) is reduced
with increment of the values of ferromagnetic number (see Figure 8). This is
happening due to the fact that β is directly related to the Kelvin force.

Figures 12 to 15 present the variations of magnetic parameter on velocity,
pressure and temperature distributions, respectively. It is apparent from Fig-
ure 12 that as magnetic parameter is increased, the axial velocity is reduced
due to the fact that the presence of magnetic field produce Lorentz forces
that act oppose to the flow. As the velocity is suppressed it is normal to see
increment of the pressure profile as the values ofM are enhanced. The reverse
behavior can be seen for the temperature profiles (see Figures 14 and 15).
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Figure 8 Influence of β on axial velocity profile f ′(η).
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Figure 9 Influence of β on pressure profile P1(η).
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Figure 11 Influence of β on temperature profile θ2(η).
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Figure 14 Influence of M on temperature profile θ1(η).
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Figure 16 Influence of D on axial velocity profile f ′(η).

Figures 16 to 19 portray the effect of various values of curvature param-
eter on velocity, pressure and temperature distributions, respectively. From
Figure 16 it is observed that f ′(η) increases as curvature is enhanced.
This can be explained because when D is increased the radius of cylinder
decreases. As a result less resistance is provided on the surface which tumid
the fluid velocity in boundary layer region. It discernible from Figures 18 and
19 that temperature profile θ1(η) is reduced for higher values of curvature
parameter but θ2(η) is enhanced. With increasing values of D we see that
pressure profile P1(η) is also increased effectively (Figure 17).

Figures 20 to 23 plotted to observe the impact of magnetic particles vol-
ume fraction on velocity, temperature and pressure distributions, respectively.
The fluid velocity f ′(η) decreases with increasing values of volume fraction
φ. This is due to the fact that magnetic particles spawn friction in fluids that
creates a resistance to the flow. Since magnetic particles in large surface area
produced high thermal conductivity, as a result thermal boundary layer is
increased which is clearly visible in Figure 23 for the temperature profile
θ1(η) whereas the opposite is observed at Figure 22 which pictures the profile
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Figure 17 Influence of D on pressure profile P1(η).
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Figure 18 Influence of D on temperature profile θ1(η).
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Figure 19 Influence of D on temperature profile θ2(η).
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Figure 20 Influence of φ on axial velocity profile f ′(η).
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Figure 22 Influence of φ on temperature profile θ1(η).
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Figure 23 Influence of φ on temperature profile θ2(η).

of the other temperature component θ2(η). The pressure profile is gradually
decreased with increasing values of volume fraction.

Finally, Figures 24 and 25 represent the effect of the Prandtl number
on temperature distributions. From Figures 24 and 25 it’s clearly seen that
with increasing values of the Prandtl number temperature profiles θ1(η) and
θ2(η) are reduced. Since Prandtl number is the ratio of momentum to thermal
diffusion in boundary layer region.

One other interesting part of the study in engineer view is to graphically
represent the skin friction coefficient, rate of heat transfer coefficient and wall
pressure gradient. Mathematically, skin friction coefficient and rate of heat
transfer coefficient are defined as

Cf = − 2τw
ρfU2

w

Nux = − x

(Tc − Tw)

(
∂T

∂r

)
r=a

 (31)
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Figure 24 Influence of Pr on temperature profile θ1(η).
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Figure 25 Influence of Pr on temperature profile θ2(η).
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Where, τw = µmf (∂u∂r )r=a is the wall shear stress, using (16) and (17),
Equation (31) reduces into

Cf = − 2

(1− φ)2.5
Re−

1
2 f ′′(0) (32)

Nux = −(θ′1(0) + ξ2θ′2(0))Re
1
2 (33)

Here Re = u0x2

υf l
known as local Reynolds number, f ′′(0) and θ′(0) =

(θ′1(0) + ξ2θ′2(0)) are defined as wall shear and wall heat transfer parameter,
respectively.

Figures 26 to 31 demonstrate the skin friction coefficient, rate of heat
transfer and wall pressure with M and β in the presence or absence of
magnetic particles volume fraction, respectively. Where P1(0) represent the
wall pressure parameter, solid line indicates when φ 6= 0 and dash line
signifies when φ = 0. From the Figures 26 to 31 it is apparent that f ′′(0),
θ′(0) increase when values of M and β are enhanced respectively, whereas
P1(0) is decreased. It also noticed from these figures that f ′′(0) and θ′(0) are
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Figure 26 Skin friction coefficient −f ′′(0) with β for various values ofM .
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always seems to be positive and negative, respectively throughout all their
variation.

Conclusion

The main objective of the present study is to analyze the magnetic field
effect on a base fluid like blood which is electrically conducting, contains
magnetic particles and flows above a two-dimensional stretched cylinder in
the presence of magnetic dipole. The numerical solution of the given problem
carried out with the help of a finite differences method, based on central
differencing, tridiagonal matrix manipulation and an iterative procedure.
The effects of leading parameters which are involved with this model are
studied and represented graphically. Such kind of problems is interesting in
biomedicine. From the above analysis the basic conclusions are:

(1) After adding magnetic particles on blood, its flow is reduced, and
the temperature is increased significantly using the extended BFD
formulation comparatively to that of FHD or MHD.
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(2) The axial velocity is decreased with increasing the values of the ferro-
magnetic number, magnetic parameter, and volume fraction whereas, is
enhanced for large values of the curvature parameter.

(3) For enlarging values of the ferromagnetic number, magnetic parameter
and Prandtl number the temperature profiles are enhanced.

(4) Opposite influence is observed in temperature profiles for curvature
parameter and volume fraction.

(5) The pressure profile is decreased significantly with enhancing values
of the ferromagnetic number, magnetic parameter and volume friction.
The reverse behavior is obtained with the variation of the curvature
parameter.

(6) For raising values of ferromagnetic number and magnetic parame-
ter, skin friction coefficient and rate of heat transfer are increased
respectively.

(7) The wall pressure is reduced for higher values of ferromagnetic number
and magnetic parameter.
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