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Abstract

This paper investigates duality solutions of biomagnetic fluid

flow and heat transfer over a permeable quadratically stretch-

ing/shrinking sheet in the presence of a magnetic dipole. The

governing nonlinear partial differential equations are converted

into a set of nonlinear ordinary differential equations with the

help of suitable similarity transformations and then solved nu-

merically by using the boundary value problem solver bvp4c

built in MATLAB software. We examine the effects of a variety

of pertinent parameters – the ferromagnetic parameter, suction

parameter, stretching/shrinking parameter – on velocity and

temperature profiles, as well as the skin friction coefficient and

Nusselt number, which are presented graphically. Dual solu-

tions exist for certain values of stretching/shrinking sheet and

suction parameters. The skin friction coefficient data are eval-

uated and compared with previous published data and better

agreement is achieved. Therefore, it can be said with confi-

dence that our present analysis is accurate. It also shows that

the ferromagnetic and stretched parameters result in reduced

velocity and thereby influence the temperature profile.

Keywords: Biomagnetic fluid, FHD, Dual solution,
Magnetic dipole, Quadratic stretching sheet.

1 Introduction

The main concept of biomagnetic fluid is the study
of the interaction of biological fluids with an applied
steady magnetic field whose flow is affected by the
presence of a magnetic field. The composition of
the biological fluid dictates the interaction of the fluid
with the applied magnetic fields. All biological fluids
may be considered biomagnetic fluids, because they
contain ions that can interact with an applied mag-
netic field.

The study of biomagnetic fluid flow over a stretch-
ing sheet has many important applications in med-
ical science and bio-engineering such as bio-sensing
application, magnetic controlled drug delivery for the
treatment of cancer and other pathological conditions,
magnetic power generations and magnetic resonance
imaging (MRI). Magnetic particles as carriers for ther-
apeutic agents have been used in experimental ani-
mals and clinical applications in humans [1]; [2]; [3];
[4]; hyperthermia or hypothermia are used for var-
ious experimental medical techniques, such as can-
cer tumor treatment, injury treatment and open heart
surgery [5]; [6].

The mathematical model of biomagnetic fluid was
first introduced by [7]. An extended BFD mathemat-
ical model was developed by [8]. Numerical studies
concerning basic flow configurations such as the BFD
channel flow using the BFD model of [7] were in-
vestigated in [9]. The primary effect is the formation
of a vortex in the area of application of the mag-
netic field. Similar basic flow configurations were also
investigated in BFD flow problems considering non-
Newtonian behavior of the biofluid [10]; [11]; [12];
[13]. [14]; [15] reported the flow analysis of biomag-
netic fluid over a stretching sheet in the presence of a
magnetic dipole.

On the other hand, numerous researchers analyzed
the study of boundary layer flow over a quadrati-
cally stretching sheet. [16] analyzed the fluid flow
past a permeable quadratically stretching/shrinking
sheet. They employed the problem solver bvp4c built
in MATLAB software to solve the equation and found
that dual solutions exist. [17] investigated the two-
dimensional stagnation-point flow and diffusion of
chemically reactive species of a viscous and incom-
pressible fluid past a permeable quadratically stretch-
ing/shrinking. [18] considered the case of mass dif-
fusion of chemically reactive species under the influ-
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ence of a magnetic field over a quadratic stretching
sheet. [19] analyzed the dual solution of biomagnetic
fluid over a nonlinear stretching/shrinking sheet using
lie group analysis. [20] reported the existence of dual
solutions of magneti-hydrodynamic fluid flow over a
stretching/shrinking sheet. [21] reported the dual so-
lutions existing for boundary layer flow and heat trans-
fer over an exponentially stretching/shrinking sheet.
It was reported by [22] that dual solutions exist for
MHD flows over a shrinking surface. [23] investigated
the dual solutions of MHD fluid flow and heat trans-
fer over a nonlinear stretching/shrinking sheet with a
convective boundary condition.

Motivated by the above studies, the present analysis
considers the biomagnetic fluid flow and heat transfer
past a permeable quadratically stretching/shrinking
sheet. The partial governing equations are trans-
formed into ordinary differential equations by using
appropriate similarity variables, and then solved nu-
merically using the boundary value problem solver,
bvp4c, built in MATLAB software.

2 Mathematical Description

Consider a steady two-dimensional electrically non-
conducting biomagnetic fluid flow and heat transfer
of a viscous and incompressible fluid over an imperme-
able quadratically stretching/shrinking sheet as shown
in Fig. 1, where x and y are the Cartesian coordi-
nates measured along the surface and normal to it,
the flow being at y ≥ 0 . It is assumed that the
surface is stretched/shrunk in the x -direction with
velocity uw (x) and it is also assumed that the veloc-
ity of the far flow is ue (x). Further, a magnetic dipole
is located at a distance in such a way that its center
lies exactly on the y-axis at distance b from the x-axis.
The magnetic field points of the magnetic dipole are
in the positive x-direction. It is also assumed that the
surface temperature Tw and the ambient fluid tem-
perature T∞ are constants.

Under these assumptions the boundary layer equations
are [24]

δu

δ x
+
δv

δ y
= 0

u δu
δ x + v δuδ y =

ue
δue
δ x+

1
ρµ0M

δH
δx + 1

ρµ
(
δ2v
δx2 + δ2v

δy2

)

ρcp

(
u δTδ x + v δTδ y

)
+

µ0T
δM
δT

(
u δHδ x + v δHδ y

)
=

k
(
δ2T
δx2 + δ2T

δy2

)

Figure 1: Geometry of the problem

The boundary conditions for the above mathematical
model are given as [16]

u = uw (x) = aλx+ bλx2, v(x) = vw, T = Tw
at y = 0

u = Ue (x)→ ax+ bx2, T → Tc as y →∞

where u and v are the velocity components along the
x and y axes, respectively, T is the fluid tempera-
ture, a is the thermal diffusivity, n is the kinematic
viscosity and a and b are constants, with a > 0 .
We note that λ is the stretching/shrinking parameter
with λ > 0 for stretching and λ < 0 is for shrink-
ing. We also note that when b = 0, it corresponds
to the linearly stretching/shrinking sheet. The other
case is b [?] 0, which corresponds to the quadratic
stretching/shrinking sheet.

Magnetization parameter M is considered to be re-
lated to temperature T as [25]

M = K(Tc − T )

The magnetic dipole lies on the y-axis at dis-
tance d below the x-axis, which generates a mag-
netic field that is sufficiently strong to saturate the
biofluid; Hx, Hy are the components of the magnetic
field H = (Hx, Hy) given by [25]

Hx(x, y) = −
γ

2π

x2 − (y + d)2

(x2 + (y + d)2)2

Hy(x, y) = −
γ

2π

2x(y + d)2

(x2 + (y + d)2)2
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The magnitude | H |= Hof the magnetic field is given
by

H(x, y) = [H2
x+H

2
y ]

1/2 =
γ

2π
(

1

(y + d)2
−1

2

x2

(y + d)4
)

3 Mathematical analysis

The mathematical analysis of the problem is simpli-
fied by introducing the following dimensionless coor-
dinates [16]

X = x
√

a
ν ,

Y = y
√

a
ν ,

U = u√
aν
,

V = v√
aν
,

Ue =
ue√
aν
,

θ(η) = Tc−T
Tc−Tw

By substituting (6) to (10) into equations (1) to (3),
we get

δU
δ X+ δV

δ Y =0(1)

U
δU

δ X
+V

δU

δ Y
= Ue

δUe
δ X

+

(
δ2V

δX2
+
δ2V

δY 2

)
− 2βXθ

(Y + δ)4

(
U δθ
δ X + V δθ

δ Y

)
+

1
Pr
βλ1(ε− θ)

(
2UX

(Y+δ)4 −
2V

(Y+δ)3 + 4X2

(Y+δ)5

)
= 1

Pr
δ2θ
δY 2

Boundary conditions for the above mathematical
model are given as [16]

u = Uw(x) = λX+AλX2, v = Vw, θ = 1 at Y = 0

u = Ue = X +AX2, θ = 1 at Y →∞

Now we introduced the dimensionless variables
[26], [16]

ψ = Xf (Y ) +AX2g (y)

where ψ is the dimensionless stream function, which
is defined in the usual way as U = δψ

δY and V = − δψ
δX

so as to satisfy the continuity equation (9). Thus, we
have

U = Xf ′ (Y ) +AX2g′ (Y )

and
V = −f (Y )− 2AXg (Y )

Substituting (17) and (18) into Eqs. (12) and (13),
the following set of ordinary differential equations are
obtained

f ′′′ + ff ′′ − f ′2 + 1− 2βθ

(η + α)4
= 0

g′′′ − 3f ′g′ + 2gf ′′ + fg′′ + 3 = 0

θ′′ + Prfθ
′ +

2λaβ(θ − ε)
(η + α)3

f = 0

The corresponding transformed boundary conditions
are

f ′(0) = λ, f(0) = S, g(0) = 0, g′(0) = λ, θ(0) = 1

f ′(∞) = 1, g′(∞) = 1, θ(∞) = 0

The important physical characteristics skin friction co-
efficient Cf and the local Nusselt number Nux are
described as

Cf =
τw

1
2ρu

2
w

and
Nux =

xqw
k(Tc − Tw)

In Eqn. (24) and (25), τw is the shear stress at wall,
while qw represents the wall heat flux, defined by

qw = −k
(
δT

δy

)
y=0

τw = µ

(
δu

δy

)
y=0

,

Introducing (26) and (27) into Eqn. (24) and (25),
the skin friction coefficient and local Nusselt number
can be written in dimensionless form as
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1

2
Cfx

√
Rex = f ′′(0) +AXg′′(0)

and
Nux√
Rex

= −θ′(0)

where Rex = uw(x)x
ν is the local Reynolds number

based on the stretching velocity uw(x).

4 Solution procedure

The systems of nonlinear ordinary differential equa-
tions (19) to (21) subject to boundary conditions (22)
and (23) were solved numerically by using the bound-
ary value problem solver, bvp4c function technique
in MATLAB. To find the solution, the prerequisites
are: (i) to reduce the system of higher order partial
differential equations to a system of first order or-
dinary differential equations by introducing new vari-
ables,(ii) to write down the boundary conditions for
the new variables, and (iii) to make appropriate ini-
tial guesses for the new variables.

Since the transformed governing equations are of third
order, to reduce them into a system of first order or-
dinary differential equations, some new variables were
defined as

f = y1, f
′ = y2, f

′′ = y3, g = y4, g
′ = y5, g

′′ =
y6, θ = y7, θ

′ = y8

Thus, the two coupled higher order differential equa-
tions and the corresponding boundary conditions were
transformed to a system of five first order ODEs along
with new boundary conditions. The system of first
order ODEs is:

f ′ = y2

y′2 = f ′′ = y3

y′3 = −y1y3 + y22 − 1 + 2βy7
(η+δ)4

g′ = y5

y′5 = g′′ = y6

y′6 = 3y2y5 − 2y4y3 − y1y6 − 3

θ′ = y8

y′8 = Pry1y8 −
2λaβ(ε− y7)y1

(η + δ)3

subject to the initial boundary conditions:

y1(0) = S, y2(0) = λ, y5(0) = λ, y4(0) = 0, y7(0) = 1, y2(∞) = 1, y5(∞) = 1, y7(∞) = 0

Equation (30) and Eq. (31) have been integrated
numerically as an initial value problem to a given ter-
minal point. All these simplifications had to be done
for the purpose of using the MATLAB package. This
program runs with a step size of η = 0.01 and then
solved for the interval of 0 ≤ η ≤ η∞ taking η∞ = 6.
This value was obtained by using the trial and error
method.

5 Result and Discussion

For the purpose of computation we assumed that
fluid blood with ρ = 1050kg.m−3and µ = 3.2 ×
10−3kgm−1S−1,ε = 78.5 and the viscous dissipa-
tion number 6.4×10−14[14], cp=3.9×103Jkg−1K−1
and k = 0.5Jm−1s−1K−1 and hence Pr = 25 [15]
. The values of β (which is related to the magnetic
field) are assumed to be from 0 to 10 by [27] ,
where β = 0 corresponds to pure hydrodynamic flow.
For validation of the numerical method, the numerical
results for the skin friction coefficient (for a limiting
case) are compared with those of [28]. The com-
parative study, presented in Table 1, shows that the
results of the present investigation are in good agree-
ment with those reported by [28].

Table 1. Comparison of skin friction coefficient for
different values of stretching parameter with β =
0, s = 0, Pr = 0.72

Figs. 2 and 3 display the variations of the skin
friction coefficients (f ′′ (0))and rate of heat trans-
fer (θ′ (0))with λ < 0 (shrinking sheet) and λ >
0(stretching sheet) for several values of ferromagnetic
parameter β when Pr = 21, S = 1, E = 78.5. From
figure 1 wit can be seen that the values of skin friction
coefficient f ′′ (0) decrease as β increases. It can also
be seen that dual solutions exist for a certain range of
the shrinking parameter λ < 0. From this figure it ap-
pears that for β = 5 a unique solution exists for λ >
−0.2 while dual solutions exist when −1.565 < λ <
−0.2, no solution exists when λ < λc where λc =
−1.565, −1.515, −1.465, being the critical value
of λ at which the two solution branches meet each
other and thus a unique solution is obtained.

Fig. 3 shows the rate of heat transfer coeffi-
cient θ′ (0) for different values of ferromagnetic pa-
rameter β with variation of the stretching/shrinking
parameter λ. From the figure, it is observed that
for the specified values of β = 5 , the solution is
unique when λ > −0.25 whereas dual solutions exist
when −1.575 < λ < −0.25 and no solutions exist
whenλ < λc where λc is the critical value of λ and the
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Table 1: Comparison of skin friction for different values of stretching parameter with β = 0, S = 0,Pr = 0.72

value Rosca et al.(2016) Rosca et al.(2016) present present

lambda 1st solution 2nd solution 2nd solution 1st solution

0 1.2325877 — — 1.232587

0.1 1.1465610 — — 1.146560

0.2 1.0511300 — — 1.051129

0.5 0.71323494 — — 0.713295

1 0 — — 0.00000

2 -1.88731 — — -1.887306

-0.25 1.4022408 — — 1.402241

-0.5 1.4956698 — — 1.495670

-0.75 1.4892983 — — 1.489298

-0.25 1.4022408 — — 1.402241

-0.5 1.4956698 — — 1.495670

-0.75 1.4892983 — — 1.489298

-1 1.3288170 — — 1.328817

-1.1 1.186680 0.04922 0.04498 1.187016

-1.5 1.082800 0.11670 0.11323 1.082800

-1.2 0.932473 0.23365 0.23069 0.932473

Figure 2: Variation of f ′′ (0) with λ < 0 (Shrinking
sheet) and λ > 0 (Stretching sheet) for β = 5, 6, 7

value of λc = −1.575, −1.465, −1.295 with spe-
cific values of β = 5, 7, 10. From this figure we also
observe that the critical value λc decreases, as the
value of the ferromagnetic parameter increases and
that of the skin friction coefficient decreases. One
may further observe that the effect of the ferromag-
netic parameter diminishes in the range of λ for which
a solution exists.

The variations of f ′′ (0) and θ′ (0) with S for β =

Figure 3: Variation of −θ′ (0) with λ < 0 (Shrinking
sheet) and λ > 0 (Stretching sheet) for β = 5, 7, 10

5, 7, 10 are shown in Figs. 4 and 5 re-
spectively. The values of Sc when β =
5, 7, 10 are 0.745, 0.805, 0.84500 where Sc is the
critical value of S at which the two solution branches
meet each other and thus a unique solution is ob-
tained. We also note that a dual solution exists for a
specific range of values of the suction parameter.

From these figures, the following observations may be
summarized for β = 5 :
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Figure 4: Variation of f ′′ (0) with S for β = 5, 7, 10

Figure 5: Variation of −θ′ (0) with S for β = 5, 7, 10

(i) For S < Sc < 1.3 dual solutions
exist.

(ii) When S > 1.3 the solution is unique.

(iii) For S < Sc no solution exists.

It can also be shown that as the ferromagnetic pa-
rameter increases, both the skin friction coefficient
and the heat transfer rate at the wall surface decrease
where the value of the skin friction coefficient f ′′ (0)
and heat transfer rate θ′ (0) are increasing for the first
solution as suction parameter S increases.

Figs. 6-8 illustrate the velocity profiles f ′ (η)
and g′ (η) and temperature distribution θ (η) for sev-
eral values for β = 1, 5, 10 which satisfy the bound-
ary condition (18) and (19) asymptotically. These
figures reveal that although the biomagnetic fluid ve-
locity (f ′ (η)) is reduced, fluid velocity (g′ (η))is
enhanced and temperature profiles θ(η) increased
as the ferromagnetic parameter increases for the first
solution, but for the second solution the velocity pro-
file decreases near the sheet and reverse behavior is

Figure 6: Dimensionless velocity profiles f ′ (η) for
several values for β = 1, 5, 10

Figure 7: Dimensionless velocity profiles g′ (η) for
several values for β = 1, 5, 10

Figure 8: Dimensionless temperature profiles θ (η)
for several values for β = 1, 5, 10

shown far away from the sheet. This happens because
as the strength of the magnetic field characterized by
beta β increases, the Kelvin force which opposes the
flow in the boundary layer also increases and leads to
enhanced deceleration of the flow and acceleration of
the temperature distribution. The impact of the mag-
netic field on an electrically conducting biomagnetic
fluid gives rise to a resistive-type force called Kelvin
force which causes the flow motion to slow down and
need more time, which gives more time for the heat
to disintegrate to the flow while passing the sheet.

Figs. 9-11 display velocity f ′ (η) , g′ (η)and tem-
perature profiles θ (η)for various values of the suc-

159 | 162



Journal of Power Technologies 101 (3) (2021) 154–162

Figure 9: Dimensionless velocity profiles f ′ (η) for
several values for s = 1, 2, 3

Figure 10: Dimensionless velocity profiles g′ (η) for
several values for s = 1, 2, 3

Figure 11: Dimensionless temperature profiles θ (η)
for several values for s = 1, 2, 3

tion/injection parameter (S). Fig. 9 and 10 reveals
that for the first solution, fluid velocity f ′ (η) in-
creases and velocity g′ (η)decreases as the suction ve-
locity enhances, while a reverse trend is observed in
the case of the second solution. Physically it is real-
istic because of the suction effect near the wall. Fig.
11 demonstrates that the fluid temperature falls as
the quantum of suction increases. The boundary
layer thickness reduces as suction proceeds. However,
this observation is valid only for the first solution. A
reverse trend is found for the second solution. This
observation implies that in the close vicinity of the sur-
face, the thermal boundary layer thickness diminishes.

Figure 12: Dimensionless velocity profiles f ′ (η) for
several values for λ = −0.5, −1.0, −1.5

Figure 13: Dimensionless velocity profiles g′ (η) for
several values for λ = −0.5, −1.0, −1.5

Figure 14: Dimensionless temperature profiles θ (η)
for several values for λ = −0.5, −1.0, −1.5

The dimensionless velocity profiles ? ’ (?), g′ (η)and
temperature profile θ (η) for several values of λ are
demonstrated in Fig. 12 to 14. The dual velocity pro-
files of Figs. 12 and 13 show that velocity decreases
with increasing magnitude of λ in the first solution and
the converse result is shown for the second solution,
i.e. the velocity increases. Physically it is realistic
because the directions of straining and shrinking ve-
locities are opposite. From Fig. 14, it can be seen
that the values of θ (η) for the first branch solution
decrease with increasing values of λ and the converse
result is shown in the case of the second solution.
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6 Conclusion and Summary

This paper investigated the duality analysis of biomag-
netic fluid flow and heat transfer over a permeable
quadratically stretching/shrinking sheet. The trans-
formed governing equations are reduced to partial dif-
ferential equations and solved numerically using the
boundary value problem solver bvp4c built in MAT-
LAB software.

The numerical values obtained for velocity and tem-
perature as well as the skin friction coefficient and
Nusselt number are presented graphically. The main
results obtained in this research are as follows:

1. A unique solution exists for the stretching sheet
while dual solutions exist for a particular range
of shrinking sheet.

2. The critical value λc decreases as the value of
the ferromagnetic parameter increases and that
of the skin friction coefficient decreases.

3. Both the skin friction coefficient and the heat
transfer rate at the wall surface decrease where
the value of the skin friction coefficient f ′′ (0)and
heat transfer rate θ′ (0)are increasing for the first
solution as the suction parameter S increases.

4. Biomagnetic fluid velocity (f ′ (η))is reduced,
fluid velocity (g′ (η))is induced and temperature
profiles increased as the ferromagnetic parameter
increases.

5. Fluid velocity (f ′ (η)) increases and veloc-
ity (g′ (η)) decreases as the suction velocity en-
hances, while a reverse trend is observed in the
case of the second solution.

6. The solution domain decreases as the suction pa-
rameter and stretching parameter with increasing
ferromagnetic parameter.
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