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Abstract. This paper analyzes the steady boundary layer flow and heat transfer of biomagnetic fluid over a stretching/shrinking
sheet with prescribed surface heat flux under the influence of a magnetic dipole. The governing equations are transformed into
a set of ordinary differential equations (ODEs) by using similarity transformations. Numerical results are obtained using the
boundary value problem solver bvp4c of MATLAB. The effects of various physical parameters on the velocity and temperature
profiles as well as skin friction coefficient are discussed. The paper shows that dual solutions exist for certain values of
stretching/shrinking sheet and suction parameters. Stability analysis is performed to determine which solution is stable and
physically valid. Results of the stability analysis depict that the first solution (upper branch) is stable and physically realizable,
while the second solution (lower branch) is unstable.
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1. Introduction

Biomagnetic fluid dynamics (BFD) is a relatively new area in fluid mechanics investigating the fluid
dynamics of biological fluids in the presence of a magnetic field. Studies of BFD problems have been
receiving growing attention of researchers owing to their potential applications in bioengineering and
medical sciences. These include development of various magnetic devices for cell separation, high-
gradient magnetic separation, reduction of bleeding during surgeries, targeted transport of drugs using
magnetic particles as drug carriers, magnetic resonance imaging of specific parts of the body using strong
magnetic fields and treatment of cancer/tumor by using magnetic hyperthermia [1–5].
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Biomagnetic fluid dynamics model was first developed by Haik et al. [6], using the principles of
FHD. Some modifications of the model proposed in [6] were later made by Tzirtzilakis [7]. This
model is consistent with the principles of ferrohydrodynamics (FHD) and the magnetohydrodynamics
(MHD). Tzirtzilakis and Kafoussias [8] studied the flow of a heated ferrofluid over a linearly stretching
sheet under the action of a magnetic field, which is generated by a magnetic dipole. Tzirtzilakis and
Tanoudis [9] presented a numerical method for the study of two-dimensional laminar incompressible flow
and heat transfer of a biological fluid over a stretching sheet. Misra and Shit [10,11] investigated flows of
biomagnetic viscoelastic fluids in different situations and made an important observation that the presence
of an external magnetic field influences the flow of biomagnetic fluids quite significantly. The problem
of biomagnetic fluid flow under the influence of a spatially varying magnetic field was studied by Nor
Amirah Idris et al. [12].

Recently, Murtaza et al. [13] investigated the combined effect of electrical conductivity and magneti-
zation on biomagnetic fluid flow over a stretching sheet. Reddy et al. [14] analyzed the magnetohydrody-
namic flow of blood in a permeable inclined stretching surface in the presence of an external magnetic field
with heat and mass transfer. Siddiqa et al. [15] investigated the effects of thermal radiation and magnetic
field on two dimensional biomagnetic fluid flows. This study was motivated towards studying the behavior
of blood flow and heat transfer in the presence of a magnetic field combined with thermal radiation effects.
Sushma et al. [16] studied the slip flow effect of MHD blood flow in the presence of heat source/sink and
chemical reaction and reported that blood velocity near the vessel wall reduces as the slip parameter is
increased.

Mukhopadhyay [17] studied the effect of heat transfer on the flow of a moving fluid on a moving
flat surface and observed the existence of dual solutions. Naganthran et al. [18] studied the flow and
heat transfer of a third grade fluid and also found dual solutions for the flow field. Krishna et al. [19]
reported that dual solutions exist for the unsteady flow of a fluid flowing over an inclined stretching
sheet. Naganthran and Nazar [20] studied the MHD stagnation-point flow and heat transfer over a
Stretching/Shrinking Sheet and also found dual solutions existence. Hafidzuddin et al. [21] observed
dual solutions for the boundary layer flow and heat transfer with slip velocity over an exponentially
stretching/shrinking sheet. Analyses of stable and unstable solutions (dual solutions) and stability were
also carried out in a variety of studies by Ghosh et al. [22], Yasin et al. [23], Awaludin [24], Mishra and
Singh [25] and Bhattacharyya [26].

Two-dimensional MHD flow of a viscous nanofluid over a nonlinear stretching surface with slip effects
of the velocity, temperature and concentration was studied by Hayat et al. [27]. Bovan et al. [28] dealt with
a problem of nanofluid flow around a triangular obstacle and observed that the Nusselt number is more
sensitive to the Stuart number rather than the orientations of the obstacle and the volumetric concentration
of nanoparticles. Das et al. studied the unsteady MHD flow of nanofluids over an accelerating, convectively
heated stretching sheet, in the presence of a transverse magnetic field with heat source/sink [29]. Rashidi
et al. [30,31] investigated the convective heat transfer of Al2O3–water nanofluid over an equilateral
triangular obstacle. They performed an optimization analysis and determined the conditions for maximum
heat transfer rate and minimum drag coefficient. Shirejini [32] analyzed nanofluid flow and forced
convection in a rotating circular cylinder and reported that the rotation of the cylinder causes reduction
in the heat transfer rate. Simulation of the nanofluid flow field and heat transfer in a rotating cylinder was
performed by Shima et al. [33]. A comprehensive review on applications of MHD flows in medical and
biological sciences was performed by Rashidi et al. [34], who made an observation that during surgery,
both blood flow and tissue temperature can be reduced by applying an external magnetic field. Very
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recently, Misra et al. [46] investigated the effects of heat transfer and entropy generation on the electro-
kinetic flow of a nanofluid in a porous microfluidic tube. The results of the study bear the promise of
important applications in biomedical engineering.

Results of studies on three-dimensional/two-dimensional MHD flows were reported in [35,36] , which
were conducted by considering the effects of velocity and thermal slip boundary conditions, and the effects
of the induced magnetic field. Ahmed et al. [37] investigated combined effects of internal heat generation
and mass transfer effects with convective boundary conditions on Casson fluid flow over a linear stretching
sheet. The natural convection of laminar flows in enclosures under the influence of a magnetic field was
examined by Jalil and Al-Tae’y [38]. In a review article, nanoparticles-based magnetic separation method
was discussed by Wang et al. [39].

The effects of the magnetic field on the control of wake structure and vortex shedding behind the
obstacles were investigated by Bovan et al. [40]. The analysis was performed for obstacles of different
geometrical configurations by using several empirical equations. Values of Stuart numbers were presented
for each obstacle. Rashidi and Esfahani [41] analyzed the forced convective heat transfer in a channel with
a built-in square obstacle under the action of an external magnetic field. The effects of magnetic field
strength and spacing ratios on the drag and lift coeffcients, streamlines and vorticity contours were also
examined by Rashidi et al. [42].

Although biomagnetic fluids have important applications in biomedical engineering, none of the studies
mentioned above was performed under the purview of biomagnetic fluid dynamics. The possibility of
the existence of dual solutions has also not been discussed in those studies. In view of this, the present
study has been aimed at investigating the effects of the magnetic parameter and suction parameter on the
flow and heat transfer of a biomagnetic fluid over a stretching/shrinking sheet with prescribed heat flux.
This study has been conducted, by considering the governing equations of biomagnetic fluid flows. The
computational results have been obtained using the built-in bvp4c function in MATLAB. The results of
the study reveal that there exist dual solutions for some specific values of suction parameter, stretching
parameter and ferromagnetic parameter. Stability analysis has also been carried out, based on which an
attempt has been made to determine which solution is stable and physically realistic. The validity of the
numerical results presented, has also been established.

2. Mathematical modelling and the governing equations

Let us consider the two-dimensional incompressible boundary layer flow and heat transfer of a
biomagnetic fluid over a stretching/shrinking sheet as illustrated in Fig. 1, where x and y are Cartesian
coordinates measured along the sheet and normal to it. It is assumed that the free stream velocity is U∞(x)
= bx and the sheet is stretched or shrunk with the velocity Uw(x) = ax, where a > 0 implies the stretching
situation and a < 0 indicates the shrinking condition and b as a positive constant. A magnetic dipole is
located below the sheet, at a distance d, i.e. at the point (0, d), d < 0, giving rise to a magnetic field of
magnetic field strength intensity H. It is assumed that temperature of the sheet is Tw(x), while the ambient
temperature is T c(x) where T c(x) > Tw(x).

Using boundary layer approximations, the governing equation for the problem can be written as:

𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 = 0 (1)
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Fig. 1. The geometry of the problem.

𝑢 𝜕𝑢
𝜕𝑥 + 𝑣𝜕𝑢

𝜕𝑦 = 𝑈∞
𝜕𝑈∞
𝜕𝑥 + 𝜈 𝜕2𝑢

𝜕𝑦2
+ 𝜇0

𝜌 𝑀 𝜕𝐻
𝜕𝑥 (2)

𝜌𝐶𝑝 (𝑢𝜕𝑇
𝜕𝑥 + 𝑣𝜕𝑇

𝜕𝑦 ) + 𝜇0𝑇 𝜕𝑀
𝜕𝑇 (𝑢𝜕𝐻

𝜕𝑥 + 𝑣𝜕𝐻
𝜕𝑦 ) = 𝑘𝜕2𝑇

𝜕𝑦2
(3)

subject to the boundary conditions

𝑢 = 𝑈𝑤(𝑥) = 𝑎𝑥, 𝑣𝑤(𝑥) = 𝑣𝑤, −𝑘𝜕𝑇
𝜕𝑦 = 𝑞𝑤(𝑥) = −𝐷𝑥 at 𝑦 = 0

𝑢 = 𝑈∞(𝑥) = 𝑏𝑥, 𝑇 → 𝑇𝑐 as 𝑦 → ∞. (4)

where u and v are the velocity components along the x- and y-axes, respectively, 𝜌 is the fluid density, k
is the thermal conductivity, cp is the specific heat at constant pressure, 𝜇 is the fluid viscosity, 𝜇0 is the
magnetic permeability and qw(x) = −Dx is the heat transfer to the wall, D being a positive constant. The
above-written governing Eqs (1)–(3) were used in several previous studies (cf. [8,45]). The magnetization
parameter M is considered to be related to the temperature T as M = K (T c − T ).

The magnetic dipole lies on the y-axis at a distance d below the x-axis, which generates the magnetic
field that is sufficiently strong to saturate the biofluid. Hx,   Hy are the components of the magnetic field
⃖⃖⃗𝐻 = (𝐻𝑥, 𝐻𝑦) given by

𝐻𝑥(𝑥, 𝑦) = − 𝛾
2𝜋

𝑥2 − (𝑦 + 𝑑)2

[𝑥2 + (𝑦 + 𝑑)2]2
and 𝐻𝑦(𝑥, 𝑦) = 𝛾

2𝜋
2𝑥(𝑦 + 𝑑)

[𝑥2 + (𝑦 + 𝑑)2]2
(𝑐𝑓 . [13]).

The magnitude ∥H∥ = H of the magnetic field is given by

𝐻(𝑥, 𝑦) = [𝐻2
𝑥 + 𝐻2

𝑦 ]1/2 ≈ 𝛾
2𝜋 [

1
(𝑦 + 𝑑)2

− 1
2

𝑥2

(𝑦 + 𝑑)4 ] . (5)
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The mathematical analysis of the problem is simplified by introducing the following dimensionless
coordinates [13,44],

𝜉(𝑥) = √
𝑏
𝜈 𝑥, 𝜂 = √

𝑏
𝜈 𝑦, 𝜓 = (

𝜈
𝜌) 𝜉𝑓(𝜂), 𝜃(𝜂) = 𝑇𝑐 − 𝑇

𝑇𝑐 − 𝑇𝑤
(6)

where 𝑇𝑐 − 𝑇𝑤 = 𝐷𝑥
𝑘 √ 𝜈

𝑏 and assumed that temperature of the sheet is Tw(x) while the temperature of the
ambient far from the surface of the sheet is T c(x) [44,45]. Far away from the sheet, the magnetization, M
= K (T c − T ) is zero and the magnetic field no longer affects the flow field.

We introduce a stream function 𝜓 such that 𝑢 = 𝜕𝜓
𝜕𝑦 𝑎𝑛𝑑 𝑣 = − 𝜕𝜓

𝜕𝑥 which identically satisfy the continuity
Eq. (1).

By substituting (6) and (5) into Eqs (2) and (3), the following similarity equation is obtained for the
given problem:

𝑓 ′′′ + 𝑓𝑓 ′′ − 𝑓
′2 + 1 − 2𝛽𝜃

(𝜂 + 𝛼)4
= 0 (7)

𝜃′′ + 𝑃𝑟𝑓𝜃′ − 2𝜆𝑎𝛽(𝜃 − 𝜀)
(𝜂 + 𝛼)3

𝑓 = 0. (8)

The corresponding transformed boundary conditions are

𝑓 ′(0) = 𝜆, 𝑓(0) = 𝑆, 𝜃′(0) = −1

𝑓 ′(∞) → 1, 𝜃(∞) → 0. (9)

The dimensionless parameters, which are of particular interest here are the following:
Prandtl number 𝑃𝑟 = 𝜇𝐶𝑝

𝑘 , Ferromagnetic parameter 𝛽 = 𝛾
2𝜋

𝜇0𝑘(𝑇𝑐−𝑇𝑤)𝜌
𝜇2 ,

Viscous dissipation parameter 𝜆𝑎 = 𝑐𝜇2

𝜌𝑘(𝑇𝑐−𝑇𝑤) , Temperature parameter 𝜀 = 𝑇𝑐
(𝑇𝑐−𝑇𝑤) and dimensionless

distance 𝛼 = √
𝑐𝜌
𝜇 . Also 𝜆 = 𝑏

𝑎 is the stretching/shrinking parameter/𝜆 > 0 for a stretching sheet, 𝜆 < 0
represents the case of a shrinking sheet and S is the suction/injection parameter. In the case of suction, S
> 0 while S < 0 indicates injection.

3. Stability analysis

In order to carry out a stability analysis, let us first consider the unsteady case. The Eqs (2) and (3) can
be re-written as

𝜕𝑢
𝜕𝑡 + 𝑢 𝜕𝑢

𝜕𝑥 + 𝑣𝜕𝑢
𝜕𝑦 = 𝑈∞

𝜕𝑈∞
𝜕𝑥 + 𝜈 𝜕2𝑢

𝜕𝑦2
+ 𝜇0

𝜌 𝑀 𝜕𝐻
𝜕𝑥 (10)

𝜕𝑇
𝜕𝑡 + (𝑢𝜕𝑇

𝜕𝑥 + 𝑣𝜕𝑇
𝜕𝑦 ) + 𝜇0

𝜌𝐶𝑝
𝑇 𝜕𝑀

𝜕𝑇 (𝑢𝜕𝐻
𝜕𝑥 + 𝑣𝜕𝐻

𝜕𝑦 ) = 𝑘
𝜌𝐶𝑝

𝜕2𝑇
𝜕𝑦2

(11)

where t denotes time. For the ongoing analysis, the following new dimensionless variables will also be
used:

𝑢 = 𝑏𝑥𝜕𝑓
𝜕𝜂 (𝜂, 𝜏), 𝑣 = −√𝑏𝜈𝑓(𝜂, 𝜏),
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𝜂 = √
𝑏
𝜈 𝑦, 𝜏 = 𝑏𝑡, 𝜃(𝜂, 𝜏) = 𝑘(𝑇𝑐 − 𝑇 )

𝐷𝑥 √
𝑏
𝜈 . (12)

Using (12), (10) and (11) can be written as

𝜕3𝑓
𝜕𝜂3

+ 𝑓 𝜕2𝑓
𝜕𝜂2

− (
𝜕𝑓
𝜕𝜂 )

2

+ 1 − 𝜕2𝑓
𝜕𝜂𝜕𝜏 − 2𝛽𝜃

(𝜂 + 𝛼)4
= 0 (13)

𝜕2𝜃
𝜕𝜂2

+ 𝑃𝑟 (𝑓 𝜕𝜃
𝜕𝜂 − 𝜕𝜃

𝜕𝜏 ) − 2𝜆𝑎𝛽 (𝜀 − 𝜃) 𝑓
(𝜂 + 𝛼)3

= 0 (14)

while the boundary conditions now assume the form

𝑓(0, 𝜏) = 𝑆, 𝜕𝑓
𝜕𝜂 (0, 𝜏) = 𝜆, 𝜕𝜃

𝜕𝜂 (0, 𝜏) = −1

𝜕𝑓
𝜕𝜂 (𝜂, 𝜏) → 0, 𝜃(𝜂, 𝜏) → 0 as 𝜂 → ∞. (15)

To test the stability of the steady flow solution, writing f (𝜂) = f 0(𝜂),  𝜃(𝜂) = 𝜃0(𝜂), one can write

𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒−𝛾𝜏𝐹 (𝜂, 𝜏)
𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒−𝛾𝜏𝐺(𝜂, 𝜏) (16)

where 𝛾 is an unknown eigenvalue parameter, and F(𝜂, 𝜏) and G(𝜂, 𝜏) are small as compared to f 0(𝜂)
and 𝜃0(𝜂). By substituting (16) into Eqs (13) and (14), the following linearized governing equations are
obtained:

𝜕3𝐹
𝜕𝜂3

+ 𝑓0
𝜕2𝐹
𝜕𝜂2

+ 𝑓
′′

0 𝐹 − 2𝑓 ′
0

𝜕𝐹
𝜕𝜂 − 𝜕2𝐹

𝜕𝜂𝜕𝜏 + 𝛾 𝜕𝐹
𝜕𝜂 − 2𝛽𝐺0

(𝜂 + 𝛼)4
= 0 (17)

𝜕3𝐺
𝜕𝜂3

+ Pr (𝑓0
𝜕𝐺
𝜕𝜂 + 𝛾𝐺 + 𝜃′

0𝐹 ) − 2𝛽𝜆𝑎𝜀𝐹
(𝜂 + 𝛼)3

+ 2𝛽𝜆𝑎(𝑓0𝐺 + 𝜃0𝐹 )
(𝜂 + 𝛼)3

= 0 (18)

which are subject to the boundary conditions

𝐹0(0, 𝜏) = 0, 𝜕𝐹
𝜕𝜂 (0, 𝜏) = 0, 𝐺(0, 𝜏) = 0

𝜕𝐹
𝜕𝜂 (𝜂, 𝜏) → 0, 𝐺(𝜂, 𝜏) → 0 as 𝜂 → ∞.

(19)

When 𝜏 = 0, the solution of the steady state equations (7) and (8) reduces to. f (𝜂) = f 0(𝜂) and 𝜃(𝜂) = 𝜃0(𝜂).
Hence, F(𝜂) = F0(𝜂) and G(𝜂) = G0(𝜂) in (17) and (18) identify initial growth or decay of the solution
(16). To test our numerical procedure, the following linear eigenvalue problem will be solved:

𝐹
′′′

0 + 𝑓0𝐹
′′

0 + 𝑓
′′

0 𝐹0 − 2𝑓
′

0 𝐹
′

0 + 𝛾𝐹
′

− 2𝛽𝐺0

(𝜂 + 𝛼)4
= 0 (20)

𝐺
′′

0 + Pr (𝑓0𝐺
′

0 + 𝛾𝐺0 + 𝐹0𝜃
′

0) − 2𝛽𝜆𝜀𝐹0

(𝜂 + 𝛼)3
+

2𝛽𝜆 (𝑓0𝐺0 + 𝜃0𝐹0)
(𝜂 + 𝛼)3

= 0 (21)

along with the new boundary conditions:

𝐹0(0) = 0, 𝐹
′

0 (0) = 0, 𝐺0(0) = 0
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𝐹
′

0 (𝜂) → 0, 𝐺0(𝜂) → 0 as 𝜂 → ∞. (22)

The smallest eigenvalue 𝛾 will determine the stability of the corresponding steady flow solution f 0(𝜂) and
𝜃0(𝜂) for all parameters involved.

Harris et al. [47] suggested relaxing a boundary condition on F0(𝜂) or G0(𝜂) to better find a range of
possible eigenvalues. Following this suggestion, it was decided to relax the condition 𝐹 ′

0 (𝜂) → 0 𝑎𝑠 𝜂 →
∞. Accordingly solution of the system (20–21) was found, considering the new boundary condition
𝐹 ′′

0 (0) = 1.

4. Numerical method

The systems of nonlinear ordinary differential Eqs (7) and (8) subject to boundary conditions (9) were
solved numerically by using the boundary value problem solver, bvp4c function technique in MATLAB.
For finding the solution, the prerequisites are: (i) to reduce the system of higher order partial differential
equations to a system of system of first order ordinary differential equations by introducing new variables,
(ii) to write down the boundary conditions for the new variables, and (iii) to make appropriate initial
guesses for the mew variables.

Since the transformed governing equations are of third order, for reducing them into a system of first
order ordinary differential equations, some new variables were defined as f = y1, f ′ = y2, f ′′ = y3, 𝜃 = y4, 𝜃′

= y5. Thus, the two coupled higher order differential equations and the corresponding boundary conditions
were transformed to a system of five first order ODEs along with new boundary conditions. The system
of first order ODEs is:

�

𝑓 ′ = 𝑦2
𝑦′

2 = 𝑦3

𝑦′
3 = −𝑦1𝑦3 + 𝑦2

2 − 1 + 2𝛽𝑦4

(𝜂 + 𝛼)4

𝜃′ = 𝑦5

𝑦′
5 = − Pr 𝑦1𝑦5 − 2𝜆𝑎𝛽(𝜀 − 𝑦4)𝑦1

(𝜂 + 𝛼)3

⎫⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

(23)

subject to the initial boundary conditions:

𝑦1(0) = 𝑆, 𝑦2(0) = 𝜆, 𝑦5(0) = −1, 𝑦2(∞) = 0, 𝑦4(∞) = 0 (24)

(23), and Eq. (24) have been integrated numerically as an initial value problem to a given terminal point.
All these simplifications had to be done for using the MATLAB package. This programme is performed
with the step size of 𝜂 = 0.01 and then solved for the interval of 0 ≤ 𝜂 ≤ 𝜂∞ taking 𝜂∞ = 3. This value was
obtained by using trial and error method.

The numerical procedure of bvp4c followed is as follows:
• Nonlinear PDEs are reduced to 1st order ODEs .
• The solution is returned by bvp4c as a structure called sol
• Mesh selection is generated and returned in the field sol.x
• Solution can be fetched from array sol.y corresponding to sol.x
• y(0) was considered as the left boundary, and y∞ as the right boundary.

The algorithm used is sketched in Fig. 2.
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Fig. 2. Algorithm of bvp4c routine in MATLAB.

5. Results and discussion

For the purpose of computation, the fluid is taken to be blood with 𝜌 = 1050 kg/m3 and 𝜇 = 3.2 × 10−3

kg m−1 s−1 [13]. The electrical conductivity of blood is 𝜎 = 0.8 sm−1 [7], T c = 41 °C and wall temperature
Tw = 37 °C. It is known that for temperatures above 41 °C, blood cells may undergo irreversible structural
damages and this is the reason why someone’s life is in danger if he/she suffers from high fever. This
biological limit of 41 °C is the Curie temperature. Beyond this temperature, the magnetization effect on
the fluid is not very prominent [7], for the above values of temperature, the temperature is 𝜀 = 78.5 and
the viscous dissipation number is 6.4 × 10−14 [13]. Generally, the specific heat under a constant pressure
cp and thermal conductivity k of any fluid are temperature- dependent. However, values of dimensionless
parameters like the Prandtl number do not change appreciably with the temperature variation. Therefore,
for the present study, one can take cp = 3.9 ×103 Jkg−1 k−1 and k = 0.5 Jm−1 s−1 k−1 and hence Pr = 25
[8,13].

The values of 𝛽 (which is related to the magnetic field) to be from 0 to 10 (cf. [4]), where 𝛽 = 0
corresponds to pure hydrodynamic flow. For the validation of the numerical method, the numerical results
for the skin friction coefficient (for a limiting case) are compared with those of Naganthran et al. [43].
The comparative study, presented in Table 1 shows that the results of the present investigation are in good
agreement with those reported by Naganthran et al. [43].

The impact of different parameters on the velocity and the temperature profiles are illustrated in Figs 3–
12. Different figures also reveal the existence of dual solutions. The figures also show that all the profiles
satisfy the far field boundary conditions (9) asymptotically.

Figure 3 illustrates the variation of skin friction coefficient f ′′(0) with the stretching/shrinking parameter
for different values of suction parameter. It is interesting to note that there exist two solutions branches.
The first branch represents the stable solution, while the second branch denotes the unstable solution
for different values of 𝜆, 𝜆c which correspond to given values of S. From Fig. 3, it can be observed that
a unique solution exists for 𝜆 > −0.75 when S = 0.5, 𝜆 > −0.9 and when S = 0.7 and 𝜆 > −1.1 when
S = 0.8, while dual solutions exist for −1.31 < 𝜆 < −0.75 when S = 0.5, −1.595 < 𝜆 < −0.9 when S = 0.7
and −1.71 < 𝜆 < −1.1. But no solution exists when 𝜆 < 𝜆c when 𝜆c = −1.31,  −1.595, −1.71 for S = 0.5,
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Table 1
Comparison of skin friction coefficient for 𝛽 = 0, S = 0, Pr = 0.72

𝜆 Present Naganthran et al. [43] Error in percentage
First

solution
Second
solution

First
solution

Second
solution

First
solution

Second
solution

-0.25 1.402239 1.402240 0.0001 -
-0.5 1.49567 1.495669 0.0001 -
-0.75 1.48929 1.489298 0.0008 -
-1.0 1.32882 0.00126 1.328816 0 0.0004 0.126
-1.15 1.08225 0.11576 1.082231 0.116702 0.0019 0.0942
-1.2 0.93253 0.23286 0.932473 0.233649 0.0057 0.0789

Fig. 3. Variation of skin friction 𝜆 for various value of S.

0.7, 0.8, respectively, where 𝜆c is the critical value of 𝜆 at which the two branches of the solution meet
each other and thus a unique solution is obtained.

The variation of the skin friction with stretching/shrinking parameter for different values of ferromag-
netic number is displayed at Fig. 4. From this figure, it may be observed that the solution is unique when
𝜆 > −1.21; multiple (dual) solutions exist when 𝜆c < 𝜆 < −1.21 and no solution exists when 𝜆 < 𝜆c, where
𝜆c is the critical value of 𝜆 and the value of 𝜆c = −1.27, −1.31, −1.345 for 𝛽 =1, 5, 10. From this figure it
may be further observed that the critical value 𝜆c decreases, as the value of the ferromagnetic parameter
increases and that of the skin friction decreases. One may note that the effect of the ferromagnetic
parameter diminishes in the range of 𝜆 for which the solution exists.

Figures 3 and 4 show that increase in the suction parameter results in an increase in the range of 𝜆 for
which the similarity solution exists. The skin friction at the surface increases as the suction parameter
increases. It is also found that the range of 𝜆 for which the similarity solution exists is increased, as
the ferromagnetic parameter 𝛽 increases. It may be mentioned that the effect of increasing the suction
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Fig. 4. Variation in skin friction with 𝜆 for various values of 𝛽.

Fig. 5. Variation of skin friction with S for various values of 𝛽.

parameter gives rise to an enlargement of the range of 𝜆 for which unique solution exists. However, an
increase in ferromagnetic parameter gives rise to a reduction in the range of 𝜆 for which the unique solution
exists.

Figures 5 and 6 show the variation of skin friction coefficient f ′′(0) with suction parameter S for different
values of stretching parameter and ferromagnetic number. It is observed that, dual solutions exist for some
specific values of the suction parameter, for different values of ferromagnetic parameter and stretching
parameter. Numerically it is seen that for 𝛽 = 3, unique solution exists for S > 0.42, dual solutions exist
for 0.323 < S < 0.42 and no solutions for S < 0.323. For 𝛽 = 5, the solution is unique for S > 0.43, dual



AU
TH

OR
CO

PY

245M. Ferdows et al. / Dual solutions for biomagnetic fluid flow and heat transfer

Fig. 6. Change in skin friction coefficient with change in S.

Fig. 7. Velocity profile f ′ (𝜂) for different values of 𝛽.

solutions for 0.347 < S < 0.43 and no solution for S < 0.347. However, for 𝛽 = 10, the solution is unique
for S > 0.44, dual solutions for 0.372 < S < 0.44 and no solutions for S < 0.372. From Fig. 5, it is seen that
the critical values of the suction parameter, Sc = 0.137, 0.347, 0.624 for 𝜆 = −0.5, −1.0, −1.5, respectively.
For 𝛽 = 5,  𝜆 = −1.0, the solution is unique for S > 1, no solution for S < 0.347 and dual solutions when
0.347 < S < 1.

An increase in the ferromagnetic parameter 𝛽 results in an increase of the range of the values of the
suction parameter for which the unique solution exists. Moreover, the skin friction coefficient at the surface
reduces as the ferromagnetic parameter increases. On the other hand, the range of the suction parameter
S for which unique solution exists is increased with an increase in the stretching parameter. Finally, the
skin friction coefficient at the surface increases as the stretching parameter increases.
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Fig. 8. Temperature profile 𝜃(𝜂) for different values of 𝛽.

Figures 7–12 depict the velocity and temperature profiles for different values of 𝛽, S, 𝜆. Figure 7 shows
that blood velocity (considered here as a biomagnetic fluid) is significantly reduced throughout the flow
field as 𝛽 increases, in the case of the first solution. Here 𝛽 is a ferromagnetic parameter and increment
of the ferromagnetic parameter results in increment of the magnetic force. This results in an increase in
flow resistance. This implies that the momentum boundary layer thickness becomes thinner with a rise in
the value of the parameter 𝛽. But the observation is to the contrary in the case of the second solution, for
which the observation is that, an increase in the ferromagnetic parameter 𝛽 results in a reduction of velocity
within the boundary layer. This observation is consistent with previous studies [8,9,13]. It is apparent that
the magnetic field retards the flow and that the flow resistance gives rise to an increase in temperature inside
the boundary layer as well [8,9,13]. These are observed for the temperature profile of the first solution
and opposite effects are observed for the second solution with increase in the ferromagnetic parameter
(cf. Fig. 8). From Fig. 8 it is also observed that thermal boundary layer thickness increases for the first
solution and decreases for the second solution with increase in the ferromagnetic parameter.

Figures 9 and 10 display the velocity and temperature profiles for different values of the suction
parameter. Figure 9 reveals that for the first solution, the fluid velocity increases, as the suction velocity
enhances, while a reverse trend is observed in the case of the second solution. This can be interpreted
physically by saying that since during suction, the fluid in the vicinity of the wall is sucked away, the
boundary layer thickness is reduced due to suction and thereby the fluid velocity is enhanced. Figure 10
demonstrates that the fluid temperature is reduced as the quantum of suction increases. This implies that
the thermal boundary layer thickness decreases as suction proceeds. This causes an increase in the rate of
heat transfer. However, this observation is valid only for the first solution. A reverse trend is found for the
second solution. This observation implies that in the close vicinity of the surface, the thermal boundary
layer thickness diminishes.

Figure 11 depicts the velocity profiles for different values of shrinking parameter 𝜆(<0). It can be noticed
from this figure that by increasing the shrinking parameter, it is possible to decelerate the fluid flow
significantly. This reduction in flow is caused due to the opposite directions of shrinking and free stream
velocities. Figure 12 illustrates the effect of shrinking parameter 𝜆 (<0) on the temperature profiles. In this
case the thermal boundary layer thickness increases as shrinking parameter increases for the first solution,
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Fig. 9. Velocity profile f ′ (𝜂) for different values of S.

Fig. 10. Temperature profile 𝜃(𝜂) for different values of S.

but an opposite trend is observed for the second solution. Figures 7–12 also reveal that the boundary layer
thickness for the second solution is always larger than that for the first solution.

6. Conclusion

This paper considered the stability of dual solutions for flow and heat transfer of biomagnetic fluids
over a stretching/shrinking/ sheet in presence of a prescribed heat flux and a magnetic dipole. Numerical
computation has been performed by using bvp4c function in MATLAB. Dual solutions were discussed
for a certain range of stretching/shrinking parameter and suction parameter. The stability analysis reveals
that the first solution is stable and physically realistic while the second solution is unstable. It can be
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Fig. 11. Velocity profile f ′ (𝜂) for different values of 𝜆.

Fig. 12. Temperature profile 𝜃(𝜂) for different values of 𝜆.

concluded from the study that the skin friction coefficient increases with an increase in the suction/
stretching parameter, but it diminishes as the value of the ferromagnetic parameter increases. It can also
concluded that the boundary layer thickness of both velocity and temperature for the second solution is
always larger than that for the first solution.
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Nomenclature

(x, y) Cartesian coordinates (m).
(u, v) Velocity components in the x, y direction (m ⋅ s−1).
(𝜉, 𝜂 ) Non-dimensional coordinates
𝜆 Stretching/shrinking parameter
⃖⃖⃖⃗𝑀 Magnetization (A ⋅ m−1)
H Magnetic field intensity (A ⋅ m−1)
Hx, Hy Component of the magnetic field intensity (A ⋅ m−1)
T Fluid temperature inside the boundary layer (K)
Tc Fluid temperature far away from sheet (K)
Tw Temperature of the sheet (K)
S Suction/injection parameter
f ′ Dimensionless velocity component.
𝜃 Dimensionless Temperature
𝜌 Density of fluid (kg ⋅ m−3)
𝜇 Dynamic viscosity (kg ⋅ m−1 s−1)
𝜈 Kinematic viscosity (m2 ⋅ s−1)
𝜇0 Magnetic permeability (N ⋅ A−2)
Cp Specific heat constant pressure (J ⋅ kg−1 K−1)
k Thermal conductivity (J ⋅ m−1 s−1 K−1)
a, b Dimensionless constants
Pr Prandtl number (Dimensionless)
𝜆a Viscous dissipation parameter (Dimensionless)
𝜀 Dimensionless Curie temperature
𝛽 Ferromagnetic interaction parameter (Dimensionless)
𝛼 Dimensionless distance
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