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In the present paper we study numerically the Biomagnetic Fluid Flow (BFD) (blood)

and heat transfer through a stretching cylinder. The physical problem is formulated by

a BFD model which incorporates both principles of FerroHydroDynamics (FHD) and

MagnetoHydroDynamics (MHD). Thus, blood is considered to be an electrically con-

ducting fluid which simultaneously exhibits polarization. The governing equations are

non-dimensionalized using suitable similarity transformations and the resulting cou-

pled non linear system of ordinary differential equations are solved using an efficient

numerical technique which is based on a common finite differences method with cen-

tral differencing, a tridiagonal matrix manipulation and an iterative procedure. Com-

parisons of our results with existed studies are made for some limiting case of the

present study and found to be in a good agreement. The results are presented graphi-

cally for different values of the parameters with emphasis to the examination of FHD

and MHD effect on the flow field as well as other physical quantities of interest, like

skin friction coefficient and heat transfer on the wall.
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1 INTRODUCTION

Biomagnetic fluid dynamics (BFD) has emerged as a new area of research in the study of the dynamics of biologi-

cal/physiological fluids under the action of a magnetic field. Recently biomagnetic fluid research area is exponentially increasing

because it is directed towards finding and developing the solutions to some of the human body related diseases and disorders

such as designing artificial organs, creating nano-robots for surgery and developing advanced imaging and signal processing

techniques for cancer, tumor and other life-threatening diseases. These research areas can have a direct real-world impact, for

example, in the field of medical imaging based diagnostics (MRI, CT scan, ultrasound etc), and targeted transport of drugs or

hyperthermia treatments [1–6].

Study of bio-magnetic fluid dynamics (BFD) that involves the influence of a magnetic field, we need to account for the

principles of both ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD). In FHD, we consider flows of electrically

non-conducting magnetic fluids and assume that the flow is influenced by fluid magnetization that takes place due to the presence

of a magnetic field. On the oteher hand, in MHD, we study the flow behavior of electrically conducting fluids, by ignoring the

effect of polarization or magnetization.
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Based on the principles of Ferrohydrodynamics (FHD) [7], Haik et al. [8] first proposed a BFD model, according to which

the biomagnetic fluid is a Newtonian and electrically non-conducting magnetic fluid. They reported that the flow is appreciably

affected by the magnetization of the fluid under the influence of high gradient magnetic fields. This BFD model was further

extended by Tzirtzilakis [9] by incorporating both principles of FHD and MHD. The extended BFD model takes into account

both magnetization and electrical conductivity of blood and the arising forces considered are the polarization and the Lorentz

force. Several studies on biomagnetic fluid flows under different conditions were investigated by many researchers. Tzirtzilakis

and Kafoussias [10] studied the flow of a heated ferrofluid over a linearly stretching sheet under the action of a magnetic field

generated due to the presence of a magnetic dipole. The effect of electrical conductivity and magnetization on the BFD flow over

a stretching sheet was studied by Murtaza et al. [11]. They found that the effect on the flow due to FHD is equally significant with

that of MHD and consequently for this physical problem neither the electrical conductivity nor the magnetization of blood can

be considered negligible. Flows of biomagnetic viscoelastic fluids in different situations were investigated theoretically by Misra

and Shit [12–13]. These studies reveal that the presence of external magnetic field bears the potential of influencing the flow

behaviour of biomagnetic viscoelastic fluids quite appreciably. An extensive work of biomagnetic fluid flows in various flow

geometries has been done and some representative works are those of Tzirtzilakis [14–16] Misra and Sinha [17] and Tzirtzilakis

and Xenos [18] and Tzirtzilakis and Tanoudis [19].

The MHD is related to the mutual interaction of fluid flow and magnetic fields. Abel et al. [20] and Lawrencer and Nageswara

[21] studied the MHD viscoelastic fluid past a stretching sheet. Abd-Elaziz and Othman [22] investigated the effect of the

Thomson heating and the Fourier’s heat conduction, in the presence of a magnetic field. The MHD Boundary layer flow and

heat transfer over a stretching cylinder is also an important problem due to its wide applications. Such analysis is used to

blood flow measurements. Lin and Shih [23, 24] investigated laminar boundary layer heat transfer along horizontal and vertical

moving cylinders with constant velocity and they found similarity solutions due to the curvature effect of the cylinder. Wang

[25] investigated the fluid flow due to the stretching cylinder and found an exact similarity solution. Ishak et al. [26] investigated

the incompressible flow of Newtonian fluid over stretching cylinder under the influence of magnetohydrodynamic effects. The

solution was calculated numerically by applying the Keller-Box method. They illustrated that MHD causes decline in velocity

profile while enhances the skin friction coefficient. Further Ishak and Nazar [27] reported that similarity solutions could be

obtained by considering the cylinder stretched with a linear velocity in the axial direction. Ishak et al. [28] analysed the flow and

heat transfer due to a stretching cylinder in the presence of magnetic field. They found that skin friction coefficient increases

with magnetic parameter. Vajravelu et al. [29] investigated the axisymmetric magneto-hydrodynamic (MHD) flow and heat

transfer at a non-isothermal stretching cylinder. They analyzed the effects of transverse curvature and the temperature dependent

thermal conductivity on the magneto-hydrodynamic (MHD) axisymmetric flow and heat transfer characteristics and reported

that impact of curvature parameter has to increase the horizontal velocity and the temperature fields. They also found that an

increase in the value of magnetic parameter leads to a decrease in the velocity boundary layer thickness. Mukhopadhyay [30]

examined the MHD boundary layer flow of viscous fluid over a stretching cylinder and analyzed that by increasing the curvature

of the cylinder the rate of transport reduces significantly. Qasim et al. [31] discussed the magnetohydrodynamic (MHD) flow

of ferrofluid along a stretching cylinder. They reported that surface shear stress and the heat transfer rate at the surface increase

as the curvature parameter increases, i.e curvature helps to enhance the heat transfer. Hayet et al. [32] studied the axisymmetric

flow of third grade fluid by a stretching cylinder in the presence of magnetic field and they concluded that the velocity and

momentum boundary layer thickness are increasing funcvtions of curvature parameter. Nadeem et al. [33] discussed the partial

slip conditions and MHD flow on an oblique stagnation point flow of rheological fluid. One of their findings was that the

increment of the magnetic field leads to decrement of the the velocities. They also found that magnetic field has opposite behavior

for both tangential and normal skin friction coefficients. Khan et al. [34] investigated the MHD boundary flow over a nonlinear

stretching cylinder and they concluded that the velocity of the fluid particle decrease and drug force enhance with the magnetic

parameter.

In view of all the above mentioned literature survey, it is observed that flow and heat transfer of biomagnetic fluids past

a stretching cylinder is not investigated widely yet. To fill this gap, the main focus of the present analysis is to investigate

the analysis of biomagnetic fluid (blood) flow and heat transfer through stretching cylinder with the variation of the mag-

netic interaction parameter. The model used take into account both magnetization and electrically conductivity arising in

the magnetic fluid. The governing nonlinear Navier–Stokes equations in cylindrical polar coordinates are introduced. Simi-

larity transformations are employed to render the nonlinear dimensional partial differential boundary layer equations into a

set of ordinary differential equations. This set of non-linear differential equations is solved by using an efficient numerical

technique which is based on the common finite differences method with central differencing, a tridiagonal matrix manipula-

tion and an iterative procedure which is described by Kafoussias and Williams [35]. The influence of various parameters on

velocity and temperature as well as skin friction coefficient and wall heat transfer are examined and discussed. The analysis
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F I G U R E 1 (A): Flow model and coordinate system, (B): Dimensionless applied magnetic field flux B

of the obtained results shows that the flow field is influenced appreciably by the magnetohydrodynamic and ferromagnetic

parameters.

2 MATHEMATICAL FORMULATION

Let us consider blood flow along the stretching cylinder with a constant radius a, whose physical model and geometric configu-

ration of the flow is shown in Figure 1. Here 𝑟-axis is the radial direction and 𝑧 axis is measured along the axis of the cylinder.

Flow direction of the fluid is parallel to its axial direction. Based on the principles of FHD and MHD, Tzirtzilakis [9] proposed

the blood is incompressible, viscous, laminar and electrically conducting fluid. A magnetic dipole is located parallel to the axial

direction which generates a magnetic field of strength 𝐵0 acting transverse to the flow direction. It is assumed that the surface

of the cylinder is at constant temperature 𝑇𝑤 and ambient fluid temperature is 𝑇𝑐 , where 𝑇𝑤 < 𝑇𝑐 .

Under the above assumptions the equation of the continuity, momentum and energy equations are

Continuity equation

𝜕𝑢

𝜕𝑟
+ 𝑢

𝑟
+ 𝜕𝑤

𝜕𝑧
= 0 (1)

Momentum equations

𝑢
𝜕𝑤

𝜕𝑟
+𝑤

𝜕𝑤

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈

(
1
𝑟

𝜕𝑤

𝜕𝑟
+ 𝜕2𝑤

𝜕𝑟2
+ 𝜕2𝑤

𝜕𝑧2

)
+

𝜇0
𝜌
𝑀

𝜕𝐻

𝜕𝑧
− 𝜎

𝜌
𝐵2
0𝑤 (2)

𝑢
𝜕𝑢

𝜕𝑟
+𝑤

𝜕𝑢

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈

(
1
𝑟

𝜕𝑢

𝜕𝑟
+ 𝜕2𝑢

𝜕𝑟2
+ 𝜕2𝑢

𝜕𝑧2
− 𝑢

𝑟2

)
(3)

Energy equation

𝜌𝐶𝑝

(
𝑢
𝜕𝑇

𝜕𝑟
+𝑤

𝜕𝑇

𝜕𝑧

)
+ 𝜇0𝑇

𝜕𝑀

𝜕𝑇

(
𝑢
𝜕𝐻

𝜕𝑟
+𝑤

𝜕𝐻

𝜕𝑧

)
= 𝑘

(
1
𝑟

𝜕𝑇

𝜕𝑟
+ 𝜕2𝑇

𝜕𝑟2
+ 𝜕2𝑇

𝜕𝑧2

)
+ 𝜎

𝜌
𝐵0𝑤

2 (4)

where u and w are the velocity components measured along r and z axis, respectively. Also, 𝜈, 𝜌, 𝜎, 𝑘, 𝜇0, 𝐵0 denotes the

kinematic viscosity, density, electrical conductivity, thermal conductivity, magnetic permeability and transverse magnetic field

respectively. The corresponding boundary conditions are

𝑤 = 𝑢𝑤 =
𝑢0𝑧

𝑙
, 𝑢 = 0, 𝑇 = 𝑇𝑤 𝑎𝑡 𝑟 = 𝑎

𝑤 → 0, 𝑇 → 𝑇𝑐 𝑎𝑡 𝑟 → ∞
(5)

Here 𝑤 = 𝑢0𝑧
𝑙

is the stretching velocity, 𝑢0 > 0 is the stretching rate and 𝑙 is the reference length.
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3 MAGNETIC FIELD EQUATION

Now we find out the magnetic field strength intensity H of the cylinder whose radius is 𝑎, length 𝑙 and is uniformly magnetized

along its axis with M = Moiz.
The magnetic field intensity in terms of the scalar magnetic potential 𝜑𝑀 is introduced by

𝐻 = −∇𝜑𝑀

From the flux continuity law, magnetic scalar potential 𝜑𝑀 satisfies Poisson’s equation.

∇2𝜑𝑀 = −𝜌𝑀 where 𝜌𝑀 = ∇.𝑀

where 𝜌𝑚 is the magnetic charge density.

Because the magnetization is constant inside the cylinder, its divergence is zero there. The magnetic charge density must reside

on the surface. Drawing a closed surface around the surface charge density and shrinking it down leads to (𝑀2 −𝑀1).𝑛 = −𝜎𝑀 .

Outside there is no magnetization 𝑀2 = 0 and inside we know 𝑀1 = 𝑀0𝑧 so that we have:

𝜎𝑀 = ±𝑀0𝑧̄.𝑛

The positive and negative signs refer to the upper and lower surfaces.

This is best summed up as:

𝜌𝑀 = 𝑀0(𝛿(𝑧 − 𝑙∕2) − 𝛿(𝑧 + 𝑙∕2)) for 𝜌 < 𝑎 and 𝜌𝑀 = 0 for 𝜌 > 𝑎

The Poisson equation for the magnetic scalar potential has the general solution:
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4𝜋 ∫
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and the gradient of H is given by
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(6)

4 TRANSFORMATION OF EQUATIONS

The stream function 𝜓 is defined as 𝑢 = −1
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Following Vajravelu et al. [29], we introduce the similarity variables

𝜂 = 𝑟2 − 𝑎2

2𝑎

√
𝑢𝑤

𝜈𝑙
, 𝜓 = 𝑎

√
𝑢𝑤𝜈𝑧𝑓 , 𝜃(𝜉, 𝜂) =

𝑇𝑐 − 𝑇

𝑇𝑐 − 𝑇𝑤

= 𝜃1(𝜂) + 𝑧2𝜃2(𝜂),

𝑃 (𝜉, 𝜂) =
𝑢0
𝑙
𝜇
(
𝑃1 + 𝑧2𝑃2

)
, 𝑀 = 𝐾(𝑇𝑐 − 𝑇 ) (7)

and the dimensionless velocity

𝑢 = −1
𝑟

𝜕𝜓

𝜕𝑧
= −𝑎

𝑟

√
𝑢0𝜈

𝑙
𝑓 , 𝑤 = 1

𝑟

𝜕𝜓

𝜕𝑟
=

𝑢0𝜈

𝑙
𝑓 ′ (8)

equation (1) is automatically satisfied and using Equations (6)–(8) in (2), (3) and (4) we get the following set of nonlinear

ordinary differential equations

(1 + 2𝜂𝛾)𝑓 ′′′ + (2𝛾 + 𝑓 )𝑓 ′′ − (𝑓 ′ +𝑀)𝑓 ′ − 𝛽𝜃1 −
2𝜇
𝜌2𝑢0

𝑃2 = 0 (9)

(1 + 2𝜂𝛾)2𝑃1
′ − (1 + 2𝜂𝛾)2𝑓 ′′ + (1 + 2𝜂𝛾)𝑓𝑓 ′ − 𝛾𝑓 2 = 0 (10)

(1 + 2𝜂𝛾)2𝑃2
′ = 0 (11)

(1 + 2𝜂𝛾)𝜃1′′ + (𝑃𝑟𝑓 + 𝛾)𝑓 ′′ − (𝑓 ′ +𝑀)𝜃1′ + 2𝑎2𝛾2𝜃2 = 0 (12)

(1 + 2𝜂𝛾)𝜃′′2 + 𝑃𝑟(𝑓𝜃′2 − 2𝑓 ′𝜃2) + 𝛾𝜃′1 + 𝛽𝜆(𝜀 − 𝜃2)𝑓 ′ −𝑀𝜆𝑓 ′2 = 0 (13)

With corresponding associated boundary conditions:

𝑓 ′ = 1, 𝜃1 = 1, 𝜃2 = 0 𝑎𝑡 𝜂 = 0

𝑓 ′ → 0, 𝜃1 → 0, 𝜃2 → 0, 𝑃1 → 0 𝑎𝑡 𝜂 → ∞ (14)

where 𝛽 = 3
2 [𝜇0𝑀0𝐾(𝑇𝑐 − 𝑇𝑤)𝑙3∕𝜌𝑎3𝑢02] the ferromagnetic interaction parameter appearing due to the principles of FHD,𝑀 =

𝜎𝐵0
2𝑙∕𝜌𝑢0 the magnetic parameter appearing in MHD which is the square of the Hartman number, 𝜆 = ( 𝑢0

2

𝑙
)𝜇∕𝐾(𝑇𝑐 − 𝑇𝑤) the

viscous dissipation parameter, 𝛾 =
√

𝜈𝑙∕𝑎2𝑢0 the curvature parameter, Pr = 𝜇𝑐𝑝∕𝑘 the Prandtl number, 𝜀 = 𝑇𝑐∕(𝑇𝑐 − 𝑇𝑤) the

temperature number.

We note here that for 𝛽 = M = 0 we have the pure hydrodynamic problem of the stretching cylinder. Moreover, when 𝛽 = 0

and 𝑀 ≠ 0 the problem is the MHD stretching cylinder flow whereas, for 𝛽 ≠ 0 and M = 0 the physical problem is reduced to

the FHD stretching cylinder flow.

5 NUMERICAL METHOD

The system of Equations (10)-(13) subject to the boundary conditions (14) is solved numerically using a numerical technique

described in detail in Kafoussias and Williams [35]. This technique attain solution of two point boundary value problems gov-

erned by second order non-linear ordinary differential equations. It has good stability characteristics, is simple accurate and

efficient and constitutes of the following essential features:

(i) it is based on the common finite differences method with central differencing

(ii) on a tridiagonal matrix manipulation and finally

(iii) on an iterative procedure.

In this method, it is essential to select a suitable finite value of n∞. The step size ℎ = 0.01 issued to obtain the numerical

solution with n∞ and and appropriate n∞ values as (𝑦 → ∞) must be determined. The different initial guesses were made taking

into account the convergence. The process is repeated until the results are corrected up to a desired accuracy. By trial and error,

we get 𝑛∞ = 1 and the tolerance between the iterations is set at 𝜀 = 10−4. In this model we also performed calculations for
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T A B L E 1 Numerical values of (−𝑓 ′′(0)) with various values of M and 𝛾 are compared with the result obtained by Vajravelue et al. [29]

M 𝜸 Vajravelue et al. [29] Present result
0.5 𝛾 = 0.0 1.224745 1.224682

0.5 𝛾 = 0.25 1.328505 1.328422

0.5 𝛾 = 0.5 1.427151 1.427204

0.5 𝛾 = 1.0 1.613858 1.618042

1.0 𝛾 = 0.0 1.414214 1.414115

1.0 𝛾 = 0.25 1.523163 1.522972

1.0 𝛾 = 0.5 1.626496 1.626203

1.0 𝛾 = 1.0 1.821302 1.820895

F I G U R E 2 Velocity profile for FHD, MHD and BFD

ℎ = Δ𝜂 = 0.001 and convergence criterion at 𝜀 = 10−5 and no significant differences were found. The numerical methodology

used is also briefly discussed in Murtaza et al. [11].

6 RESULTS AND DISCUSSIONS

In this section, the influence of various parameters on velocity, pressure, temperature, skin friction and heat transfer rate of blood

are discussed. First, realistic values should be assigned at the parameters entering the physical problem. To attain this, we use

values previously documented in the relative literature. Since the fluid is assumed to be blood so we assign: 𝜌 = 1050 kg∕m3,

𝜇 = 3.2 × 10−3 kgm−1s−1[10], 𝜎 = 0.8 sm−1, 𝐶𝑝 = 14.65 JKg−1.K−1, 𝑘 = 2.2 × 10−3 Jm−1s−1k−1 [10, 14, 18] and hence

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
= 21, for a human body temperature [19] 𝑇𝑤 = 37◦C whereas the body curie temperature is 𝑇𝑐 = 41◦C, hence the

dimensionless temperature is 𝜀 = 78.5. The present numerical investigation has been carried out with the ferromagnetic inter-

action parameter B = 0, 5, 8, 10, 41 [10, 11, 14, 19] and magnetohydrodynamic interaction parameter M = 0, 5, 10 [19],

𝛾 = 0.5, 1, 1.5 [29]. Noted that 𝑀 = 0, 𝛽 ≠ 0 corresponds to pure ferrohydrodynamic flow, 𝑀 ≠ 0, 𝛽 = 0 corresponds to

pure magnetohydrodynamic flow and 𝑀 ≠ 0, 𝛽 ≠ 0 corresponds to mixed ferrohydrodynamic and magnetohydrodynamic flow

i.e. biomagnetic fluid flow modelled by the extended BFD model [9].

For the validation of the numerical results, for some limited case, when the ferromagnetic parameter is absent i.e 𝑀 ≠ 0, 𝛽 =
0, the present numerical results are compared with the results of Vajravelu et al. [29] for −𝑓 ′′(0). The comparisons of −𝑓 ′′(0)
for various values of M and 𝛾 , are given in Table 1 and found to be in good agreement with those calculated in the present paper.

Figures (2) to (6) demonstrate the influence of ferromagnetic, magnetohydrodynamic and curvature parameter on the axial

and transverse velocity, respectively. From Figure 2 it is apparent that the decrement of the axial velocity 𝑓 ′ is greater for pure

ferrohydrodynamic flow than pure MHD one. This decrement is more effective for the BFD flow. It is clear that due to the

presence of a magnetic field both Kelvin and Lorentz forces are acting against the flow. This resistive force slows down the fluid

velocity component i.e. boundary layer thickness decreases. These findings are consistent with previous documented findings

[10, 11, 19]. Moreover, from Figure 3 we observe that the flow can be reversed for various value of the MHD parameter. The

point of the detachment of the flow from the wall (𝑓 ′), cross flow is shown far away from the sheet for smaller value of FHD
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F I G U R E 3 Axial velocity profile for various values of M and 𝛽

F I G U R E 4 Transverse velocity profile for various values of 𝑀 and 𝛽

F I G U R E 5 Axial Velocity profile for various values of 𝛾 and 𝛽

parameter and for increasing value of ferromagnetic parameter cross flow is shown near the sheet and finally for larger value of

FHD parameter, we observe that there is no cross flow (Figure 3).

In Figure 4 shows the variation of the transverse velocity for different values of ferromagnetic, and magnetohydrodynamic

parameters. From Figure 4 we generally observe that, all the profiles of the transverse velocity are generally increased as M

increases for low values of 𝛽 and the opposite is happening for 𝛽 = 10. Moreover, for the lower values of 𝛽 i.e. 𝛽 < 5 and for

a specific value of 𝛽, increment of M leads to increment of the transverse velocity. This is due to the fact that variation of B
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F I G U R E 6 Transverse velocity profile for various values of 𝛾 and 𝛽

F I G U R E 7 Temperature profile for FHD, MHD and BFD

leads to the variation of the Lorentz force due to magnetic field, and the Lorentz force produces more resistance to transport

phenomena. It is noted that for larger values of ferromagnetic parameter (say 𝛽 = 10), the transverse velocity shows the opposite

behavior with increasing magnetohydrodynamic parameter.

Figures 5 and 6 show the variation of the transverse and axial velocity for different values of ferromagneic, magnetohydrody-

namic. and curvature parameter. We notice from these figures that the transverse velocity profile decreases but the axial velocity

profile increases with increasing values of the curvature parameter (Figures 5 and 6). The effect of increasing values of the

curvature parameter is to increase the axial velocity and thereby enhance the boundary layer thickness. That is, the boundary

layer thickness is greater for higher values of the curvature parameter. From Figure 5 we also observe that for different values of

curvature parameter the cross flow has produced. This cross flow is near the sheet for larger value of ferromagnetic parameter

and after certain values of 𝛽 cross flow is vanished.

Figure 7 shows the temperature profile for different cases of MHD, FHD and extended BFD flows. We observe from this

figure that the temperature is increased in all cases. The most effective increment is attained for the extended BFD cases.

Figures 8 and 9 illustrate the variation of the temperature distributions with ferromagnetic, magnetohydrodynamic and cur-

vature parameter. We observe that, for valuew of 𝛽 less than approximately 8, the temperature distribution is increased as M

increases. For greater values of 𝛽 the temperature is reduced with the increment of M. Analogous behavior is observed for the

effect of the curvature along with the variation of 𝛽, pictured at Figure 9. Namely, for 𝛽 less than approximately 8, increment of

𝛾 results to increment of 𝜃(𝜂) whereas, the opposite is true for value of 𝛽 greater than 8.

Figures 10 and 11 illustrate the pressure distribution for various values of 𝛽, M and 𝛾 . It is noticed that the pressure control is

more effective for extended BFD case than MHD or FHD. We also observe that the pressure distribution is decreased near the

wall and reverse trend is shown far away from the sheet with the increment of the curvature parameter.
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F I G U R E 8 Temperature profile for various values of M and 𝛽

F I G U R E 9 Temperature profile for various values of 𝛾 and 𝛽

F I G U R E 10 Pressure profile for FHD, MHD and BFD

Figures 12 to 15 represent the skin friction coefficient and wall heat transfer rate with M, 𝛽 and 𝛾 . The variation of −𝑓 ′′(0)
is shown in Figures 12 and 13. Increment of 𝛾 leads to almost linear increment of −𝑓 ′′(0) for smaller values of 𝛽 and for larger

value of 𝛽 its increment is not linear and the same behavior is observed with the increment of M. From Figure 13 we observe

the −𝑓 ′′(0) is a linear increment with b and 𝛾 . It is seen that the values of 𝑓 ′′(0) are always negative. Physically, negative sign

of 𝑓 ′′(0) implies that the stretching sheet exerts a drag force on the fluid that cause the movement of the fluid on the surface.
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F I G U R E 11 Pressure profile for various values of 𝛾 and 𝛽

F I G U R E 12 Skin friction coefficient with 𝛾 for various values of 𝛽

and M

F I G U R E 13 Skin friction coefficient with 𝛽 for various values of 𝛾

and M
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F I G U R E 14 Rate of heat transfer with 𝛾 for various values of 𝛽 and M

F I G U R E 15 Rate of heat transfer with 𝛽 for various values of 𝛾 and M

The variation of the wall heat transfer parameter −𝜃′(0) with 𝛽, M and 𝛾 is shown at Figures 14 and 15. For this figure we

observe that −𝜃′(0) decrease with 𝛾 and its decrease is not linear. Here we observe that the major variation is observed with

the variation of 𝛽 rather than M (for a specific value of 𝛽). As 𝛽 is increased the reduction of −𝜃′(0) with the increment of 𝛽 is

observed at Figure 15. This increment is greater with the increment of 𝛾 for relatively small values of 𝛽. The opposite is true for

values of 𝛽 greater than 5.

7 CONCLUSION

The effect of magnetic field on two-dimensional blood flow and heat transfer through a cylindrical tube has been studied. The

governing equations reduced to a set of ODE by using appropriate transformation and these equations are solved numerically

using finite difference scheme based on central differencing and tridiagonal matrix. From the above investigation, we can we

can draw the following conclusions:

(i) Blood flow control is appreciably reduced and temperature is enhanced for the extended BFD formulation rather than the

formulation of FHD or MHD.

(ii) The effects of the magnetic number on the transverse velocity as well as on the temperature profiles are showing an inter-

esting behavior. With the increase of FHD number due to the magnetization, the temperature as well as the transverse

velocity are generally increased in the boundary layer. This increment is further enhanced with the increment of M for the
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lower values of 𝛽. However, for a specific 𝛽 > 5 increment of M has the opposite effect and the transverse velocity and

temperature distribution are reduced. Of course this reduction is not enough to counterbalance the increment caused by the

increment of 𝛽.

(iii) The transverse velocity profile decreases near the wall and the reverse trends is shown far away from the wall with the

increment of the curvature parameter for smaller values of the FHD parameter. On the other hand, forlarger values of FHD

number (𝛽 > 5) the velocity is increased and the temperature is decreased with the increment of the curvature parameter.

(iv) The magnitude of the skin friction coefficient as a function of curvature parameter increases with the increment of the

magnetic parameter whereas the rate of heat transfer is decreased.
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