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Abstract: The studies dealing with micropolar magnetohydrodynamic (MHD) flows usually ignore
the micromagnetorotation (MMR) effect, by assuming that magnetization and magnetic field vectors
are parallel. The main objective of the present investigation is to measure the effect of MMR and
the possible differences encountered by ignoring it. The MHD planar Couette micropolar flow is
solved analytically considering and by ignoring the MMR effect. Subsequently, the influence of
MMR on the velocity and microrotation fields as well as skin friction coefficient, is evaluated for
various micropolar size and electric effect parameters and Hartmann numbers. It is concluded that
depending on the parameters’ combination, as MMR varies, the fluid flow may accelerate, decelerate,
or even excite a mixed pattern along the channel height. Thus, the MMR term is a side mechanism,
other than the Lorentz force, that transfers or dissipates magnetic energy in the flow direct through
microrotation. Acceleration or deceleration of the velocity from 4% to even up to 45% and almost 15%
deviation of the skin friction were measured when MMR was considered. The crucial effect of the
micromagnetorotation term, which is usually ignored, should be considered for the future design of
industrial and bioengineering applications.
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1. Introduction

The model of micropolar fluids proposed by Eringen [1,2] is a mathematical theory, which accounts
also for the local microstructure of a fluid. It is considered as a generalization of the well-known
Newtonian model, which assumes that the fluid particles have no internal characteristics [3,4]. The
micropolar theory describes fluids with a wide variety of microstructure by assuming that their internal
particles may rotate independent of their linear velocity [5,6]. Furthermore, micropolar fluids are
viscous fluids with a non-symmetric stress tensor [7]. Consequently, a new equation is added, which is
formulated by the balance law of angular momentum, while a new vector field (the microrotation) is
introduced, which describes the total angular velocity of the suspended fluid’s particles. Some examples
of fluids which can be described by the micropolar theory are liquid crystals [8], lubricants [9,10],
ferrofluids [11], water [12], and granular flows [13,14].

Magnetohydrodynamics (MHD) is the science that deals with the flow of electrically conducting
fluids in the presence of a magnetic field. The motion of the conducting fluid across this magnetic
field creates electric currents. The interaction of the magnetic field with these currents produces
mechanical forces, known as Lorentz forces, which influence the flow of the fluid. Eringen [15,16]
examined the magnetohydrodynamics as well as electrodynamics of micropolar fluids. The latter is
the branch of physics that investigates phenomena related with moving charged bodies along with
varying electric and magnetic fields, given that a magnetic field is developed by the moving charges.
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Since Eringen’s studies [15,16], a plethora of researchers have examined MHD micropolar flows. Chen
et al. [17] established a set of equations for the electrodynamics of micropolar fluids utilizing the
balance laws of mass, linear momentum, angular momentum, energy, and entropy for micropolar
fluid dynamics integrated with Maxwell’s equations. Onsager’s theory and Wang’s representation
theorem, which were based on the principle of objectivity, were incorporated for the constitutive
equations. They also derived a linear formulation that can be used for magneto-micropolar fluid
dynamics and plasma physics. Murthy et al. [18] investigated the steady flow of an incompressible
conducting micropolar fluid through a rectangular channel in the presence of a transverse magnetic
field. The induced magnetic and electric fields were negligible and the velocity with microrotation
was obtained with the use of Fourier series. Moreover, the volumetric flow rate was calculated, while
the microrotation parameter, geometric parameter and Hartmann number effects on the flow were
investigated. Yadav et al. [19] studied the flow of a micropolar fluid between two Newtonian fluid
layers through a horizontal porous channel. The flow was driven by a constant pressure gradient and a
uniform magnetic field was applied in the direction perpendicular to the flow. The solution of the flow
was obtained numerically, and the results were used for evaluating the influence of various transport
parameters such as magnetic number, viscosity ratio on the velocity and microrotation profiles. Patel
et al. [20] examined the mixed convection of a micropolar fluid in a porous medium in the presence of
a uniform magnetic field for a nonlinear stretched surface by considering viscous dissipation and Joule
heating. Further, heat and mass transfer were studied along with thermophoresis, Brownian motion,
non-linear thermal radiation and chemical reaction. They concluded that the velocity profiles in case of
linear stretching sheet were reduced compared to those of non-linear stretching sheet. In addition, the
values of skin-friction coefficient were higher for the case of strong concentration in comparison with
the case of weak concentration. Furthermore, Brownian motion and the thermophoresis parameter
improved the heat transfer, whereas the mass transfer was reduced with the variation of the chemical
reaction parameter.

A subclass of micropolar fluids is biological fluids, such as blood [21]. A plethora of researchers
have used the micropolar continuum theory of Eringen to describe blood flow. Ariman [22] used the
theory of micropolar fluids with stretch in order to analyze blood flow in relatively small arteries.
No-slip conditions were imposed for the velocity boundary conditions and exact solutions of the
governing equations were obtained. Mekheimer et al. [23] and Asadi et al. [24] established micropolar
models for blood flows through tapered stenosed artery. As far as the investigation of blood flows
subject to magnetic fields is concerned, Eringen’s MHD micropolar fluid model has widely been
incorporated. Bhargava et al. [25] examined a two-dimensional fully developed steady-state, viscous
hydrodynamic flow of a deoxygenated biomagnetic micropolar fluid. The solution of the problem
was obtained numerically and the effect of various dimensionless parameters, such as biomagnetic
number, was discussed on the velocity and microrotation profiles. Abdullah et al. [26] investigated
the rheological properties of MHD blood flow via the constitutive equations of a micropolar fluid.
The unsteady nonlinear differential system along with the corresponding boundary conditions was
solved numerically and the results pertaining to the axial velocity, flow rate and wall shear stress were
obtained. It was found that the applied magnetic field results in reduced blood flow rate. Recently,
Jaiswal et al. [27] presented a two-fluid model of blood flow through a porous layered artery in the
presence of a uniform magnetic field transversely applied to the direction of blood flow. Blood was
assumed as a micropolar fluid in the core region and plasma is treated as a Newtonian fluid in a
second region of the artery, which comprises 55% of blood volume [28]. Analytical solutions of the
flow velocity, microrotation, flow rate and stresses at the wall through the composite porous walled
artery were obtained. The effect of several flow parameters on the two-fluid model of blood flow was
examined. They concluded that the different permeabilities of Darcy and Brinkman regions of the
porous layered artery affects the flow.

As mentioned above, Eringen’s MHD model for micropolar fluids has been incorporated by
several researchers for the purpose of investigating various micropolar MHD flows. This model was
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developed based on Maxwell’s equations and micropolar balance laws. However, in the balance law of
the angular momentum the internal rotation because of the magnetization has not been included, since
magnetization was considered parallel to the magnetic field. To this end, Shizawa et al. [29] obtained a
set of equations for micropolar fluids with good thermal and electrical conductivity including internal
rotation. In their context, magnetization does not depend only on thermodynamic quantities, but on
the state of flow as well because of the anisotropy of magnetic fluids. Thus, magnetization vector was
not assumed parallel to the magnetic field vector and thus micromagnetorotation (MMR) effects in
microrotation are non-zero. Shizawa et al. [29] presented an analytical solution of the planar Couette
micropolar flow with the MMR term, without however, emphasizing on the effect of the term in
linear velocity and microrotation. Moreover, it appears that at most of the relevant literature where
magnetization is considered, the MMR term is ignored in micropolar equations.

To the authors knowledge, there are extremely limited studies on micropolar flows considering
that due to magnetization, MMR effect on microrotation [30,31] is important. In the present model
flow, a simple micropolar Couette flow is examined under uniform magnetic and electric fields.
The solutions of the dimensionless equations regarding velocity and microrotation are obtained
analytically, using both Eringen’s MHD micropolar mathematical model [15,16] and MMR model of
Shizawa-Tanahashi [29]. Consequently, the effects of various important dimensionless parameters
entering the problem due to the MMR term on velocity and microrotation are discussed and useful
conclusions are drawn. In the present investigation, an elaborate study is presented in order to capture
the differences arising because of the MMR term. Hence, the limitations of ignoring the term are
investigated, aiming at filling the gap of knowledge in the relative literature. The importance of this
investigation is reinforced taking also into account the ongoing usage of magnetic fields in biological
fluids, which are described as micropolar. The applications of this include magnetic targeted drug
delivery systems [32], magnetic hyperthermia for thermal ablation of cancer cells [28], and lessening of
bleeding in surgeries [33] to mention but a few.

2. Model and Governing Equations

2.1. Statement of the Problem

The flow of a micropolar fluid between two infinite parallel planes is considered in this investigation,
as can be illustrated in Figure 1. The Cartesian coordinate system (x, y, z) is used to describe the
physical plane. A constant electric field along with a constant magnetic field are applied with
components, E = (0,−E0, 0) and H = (H0, 0, 0), respectively. The pressure gradient towards the z

direction is considered to be zero
(
∂p
∂z = 0

)
. The linear velocity component is given as U = (0, 0, υ (x)),

the angular velocity of the fluid is given by w = (0, ω (x), 0) and the microrotational velocity
component is given as W =

(
0, Ω (x), 0

)
. The flow is free of external mechanical body forces, body

couples and electric charges. Any temperature differences between the plates and polarization of
the fluid are ignored. The upper and lower wall surfaces are insulators, i.e., χm � 0, where χm is
the magnetic susceptibility. The upper plane moves at constant velocity, υ0, and is located at x = L
whereas the lower plane is still and located at x = −L, where L is the half-distance between the two
planes. The following boundary conditions are imposed:

1. No-slip and no-penetration conditions for the velocity field, i.e., υ| x=−L = 0 and υ| x=L = υ0.
2. Condiff–Dahler conditions for the microrotation field and the angular velocity, i.e., W = δw,

where δ is called wall coefficient. In this study δ = 0, which means that the microelements close
to the wall are unable to rotate [34].
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Figure 1. Schematic representation of the MHD micropolar Couette flow configuration.

2.2. Governing Equations

A set of basic equations for nonconducting magnetic fluids with internal rotation and a set of
basic equations for conducting magnetic fluids treated as a limit of nonpolar theory are combined.
The system of equations concerning conducting fluids is extended within the limits of micropolar fluid
theory using a thermodynamic method for both set of equations. Constitutive equations of stress
tensor, couple stress tensor, and so on are calculated such that the second law of thermodynamics is
satisfied, and dissipation function is positive based on kinematical balance equations. When internal
rotation is considered, magnetization depends both on thermodynamic quantities and the state of
flow because of anisotropy of magnetic fluids. Therefore, magnetization vector cannot be assumed
parallel to the magnetic field vector. A constitutive equation of magnetization is introduced using a
dissipation function instead of a relaxation equation, while magnetic susceptibility tensor is included.
The complete set of equations is [29,30]:

∇·U = 0, (1)

∇·W = 0, (2)

ρ
dU
dt

= −∇p + η∆U + 2η1∇× (W−w) + j×B + (M·∇)H + M× (∇×H), (3)

l
dW
dt

= γ∆W + 4η1∇× (w−W) + M×H. (4)

where ρ is density, t is time, p is pressure, l is the moment of inertia, γ is angular viscosity coefficient, η
is shear viscosity coefficient, and η1 is vortex viscosity coefficient, M is the magnetization vector, B is
the magnetic flux density vector, j is the current density, and the MMR term is M×H in Equation (4).
The angular velocity of the fluid is given by:

w = ∇×
U
2

. (5)

The constitutive equations of the magnetization vector and magnetic flux density vector are given
by:

M =
M0(I− τΩ·ε)·H

H
, (6)

B = µ0H + M. (7)
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where M0 is the magnetization strength, I is the identical tensor, ε is Levi-Civita’s symbol and µ0 is the
magnetic permeability. The shear viscosity coefficient, vortex viscosity coefficient, angular viscosity
coefficient, microinertia and relaxation time of magnetization are related as follows:

γ = i2η, (8)

η1 =
l

4τs
, (9)

τ = τs(1 + ε). (10)

where, i is the microinertia that is defined as: i2 = l
ρ , with ρ being the density of the fluid, τs represents

the relaxation time of microrotation due to frictional drag of fluid and ε is the micropolar effect
parameter. Considering the electric displacement to be negligible, Ohm’s law becomes:

∇×H = j, (11)

j = σ(E + υ×B). (12)

where, σ is the electrical conductivity, Equations (11) and (12) are equalized as follows:

∇×H = σ(E + υ×B). (13)

Analyzing Equation (13) in x, y and z directions, it is obtained that:

Jx = 0, (14)

Jy = −
dHz

dx
= σ

(
υBx − E0

)
, (15)

Jz = 0. (16)

The applied magnetic field component is given by H =
(
Hx, 0, Hz

)
. Additionally, it is assumed

that the induced magnetic field is sufficiently smaller than the applied magnetic field, i.e., Hz
Hx
� 1.

This is a widely used approach, also known as low-Rm approximation that is incorporated in several
studies in the relative literature, such as [30,31]. This approach allows the neglecting of the solution of
the magnetic induction equation leading to a reduction of the equations that need to be solved.

Equation (6) is analyzed in x, y and z directions using the flow assumptions and calculations
above:

Mx =
M0

(
Hx + τHzΩ

)
Hx

≈M0, (17)

My = 0, (18)

Mz =
M0

(
Hz − τHxΩ

)
Hx

≈ −τΩM0. (19)

Consequently, the set of governing equations takes the form:

∂p
∂x

= µ0 JyHz, (20)

2(η+ η1)
dω
dx
− 2η1

dΩ
dx
−M0

dHz

dx
+ µ0 JyHx = 0, (21)

γ
d2Ω

dx2 − 4η1
(
Ω −ω

)
−

(
M0Hz −MzHx

)
= 0. (22)
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Equations (20)–(22) have been non-dimensionalized as:

x = x
L , υ = υ

υ0
, Ω = Ω

Ω0
, ω = ω

ω0
, p =

p
p0

,

E = E
E0

, H = H
H0

, M = M
M0

, j = J
j0

.
(23)

where, Ω0 = υ0
4L , j0 = σµ0H0υ0,ω0 = υ0

4L , p0 =
ηυ0
2L , which leads to the derivation of the dimensionless

parameters which are:

ζ = E0
µ0H0υ0

, Ha = µ0H0L
√
σ
µ , ε = ηr

η , λ = L
i ,

σm = ττsH0M0
I (1− h), h = M0

µ0H0
.

(24)

where ζ corresponds to electric effect parameter, Ha is Hartmann number, ε is micropolar effect
parameter, and λ is size effect parameter. Parameter σm is the new dimensionless variable that is
associated with the MMR term and it is called magnetization effect parameter. Ohm’s law, angular
velocity, and Equations (20)–(22) in non-dimensionalized form become:

ω = −2
dυ
dx

, (25)

jy = −ζ+ υ, (26)

∂p
∂x

= 2Ha2 jyHz, (27)

dω
dx
−

ε
1 + ε

dΩ
dx

+
2Ha2

1 + ε
υ+

2ζHa2

1 + ε
= 0, (28)

d2Ω
dx2 − 4ελ2(1 + σm)Ω + 4ελ2ω = 0. (29)

The boundary conditions take the following dimensionless form:

υ(−1) = 0, υ(1) = 1, Ω(−1) = δω(−1) = −2δ
dυ
dx

∣∣∣∣∣
x=−1

= 0, Ω(1) = δω(1) = −2δ
dυ
dx

∣∣∣∣∣
x=1

= 0 (30)

2.3. Solution of the Governing Equations

In this section, the procedure for solving the system of differential Equations (28) and (29) subject
to the boundary conditions (30) is presented for the linear velocity and microrotation. The Eringen’s
MHD micropolar model [3,15,16] corresponds to the case when the magnetization effect parameter is
zero (σm = 0) and the MMR term is ignored. This model is compared against the Shiwada-Tanahashi’s
MHD micropolar model [29,30] where the magnetization effect parameter is nonzero (σm , 0) and the
MMR term is thus active. By differentiating Equation (28) and using (25) and (29), it is derived the
one-way coupled system:

d4υ

dx4
− ξ1

d2υ

dx2 + ξ2υ− ξ3 = 0, (31)

Ω = Z
dυ
dx
−Λ

d3υ

dx3 . (32)

where ξ1, ξ2, ξ3, Z and Λ are given by:

ξ1 = 4ελ2(1 + σm) +

(
Ha2
− 4ε2λ2

)
1 + ε

, (33)

ξ2 =
4ελ2(1 + σm)Ha2

1 + ε
, (34)
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ξ3 =
4ελ2(1 + σm)ζHa2

1 + ε
, (35)

Z =
Hα2
− 4ε2λ2

2ε2λ2(1 + σm)
, (36)

Λ =
1 + ε

2ε2λ2(1 + σm)
. (37)

The final solutions for the non-dimensionalized linear velocity and microrotation are then:

υ = 1
f3ξ2

(e−xAκ5 + f3ξ3 + eA+xABκ4ϕ2ψ2 − eB+xBAκ3ϕ3ψ2

−eB−xBAϕ3ψ2
((
κ6

(
A2Λ + ϕ1

))
+ κ8

)
),

(38)

Ω = −1
h2

e−x(A+B)ABψ2
(
−exBh1Λ − e(2+x)A+B f2Zϕ3 + exA+3B f2Zϕ3

)
−eA+xB f1Zϕ2ψ2 − eA+2xA+xBκ4

(
Z−A2Λ

)
ϕ2ψ2

+exA+B
(

f2B2Λ + e2xBκ3
(
Z− B2Λ

))
ϕ3ψ2.

(39)

All constants used in the solutions above are defined in the Appendix A Section.
Next, two important parameters that are widely used in several simulations and designs in

the relative literature, namely the skin friction and couple stress coefficients, are presented [35,36].
The coefficient of skin friction can be expressed as [36]:

C f =
2τw

ρυ2 . (40)

In Equation (40), τw is the shear stress tensor, which via the Shiwada-Tanahashi’s MHD micropolar
equations can be defined as:

τw = (η+ η1)
dυ
dx

+ 2η1Ω, (41)

and in dimensionless form as:
τw = (1 + ε)

υ0

L
dυ
dx

+
υ0

2L
εΩ. (42)

Using the above physical quantities, the skin-friction coefficient at the upper plate in dimensionless
form is given by:

C f = Re−1
(

dυ
dx

∣∣∣∣∣
x=1

+
ε

2(1 + ε)
Ω|x=1

)
. (43)

where Re = ρυ0L
η is the Reynolds number.

3. Results

In brief, the fully developed planar MHD micropolar Couette flow is analytically solved for
various values of the magnetization effect parameter σm. The parameter σm is zero when the MMR
term is ignored and, consequently, Shiwada-Tanahashi’s model is reduced to Eringen’s one. In order
to identify the effect of magnetization in various situations, the linear velocity and microrotation
are plotted for a number of dimensionless parameters for both σm = 0 and σm = 1. The effect of
magnetization and the MMR term is clearly depicted by the differences ∆υ and ∆Ω of the velocity and
microrotation profiles, respectively, by switching on and off σm when the other parameters of the flow
are fixed. These differences are defined as:

∆υ = υσm=1 − υσm=0, (44)

∆Ω = Ωσm=1 −Ωσm=0. (45)
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The effect of MMR term is discussed below as the micropolar parameter ε is varied in the range
0 < ε < 1, the size effect parameter λ in the range 5 < λ < 20, the Hartmann number in the range
0 < Ha < 18, and the electric effect parameter ζ in the range 0.1 < ζ < 15.

3.1. Effect of Magnetization for Various Values of the Micropolar Effect Parameter, ε

The micropolar effect parameter, ε (= η1/η), is related to almost all terms of Equations (28) and
(29) as it is connected to the Newtonian kinematic viscosity and the vortex viscosity coefficients. It is
studied here in the range of 0 < ε < 1. Hence, when ε tends to zero, the usual Newtonian fluid flow
equations are recovered [37,38] and the fluid has denser internal microstructure as ε increases. Thus, ε
is a measure of the ratio of micropolar diffusion over molecular dissipation.

Figure 2 illustrates the influence of the magnetization parameter, σm, in the velocity and
microrotation profiles for ε= 0.1, 0.5 and 0.9 in the case of λ= 5, Ha = 1, ζ= 0. The dimensionless velocity
is kept equal to 1 at the upper plate and 0 at the lower plate, while the corresponding microrotation
values at the walls are 0 as a result of setting δ = 0 at both plates. As can be gleaned from the velocity
distributions of Figure 2a–c (left), in the laminar Couette flow that it is considered here, the fluid
velocity profile is differentiated as compared to the usual linear hydrodynamic one owing to the effect
of Lorentz forces on the conducting fluid. The magnetization parameter, σm, that it is also connected
to the magnetic field can furthermore differentiate the velocity profile. An important finding is that
the influence of the magnetization on the velocity profile is almost inappreciable for small values of ε,
while it gradually starts affecting the velocity as ε increases. This occurs because for small micropolar
effect parameters the velocity profile acquires that of a Newtonian fluid. However, as ε increases,
the microrotation increases, and the MMR term can consequently be more important.
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Figure 2a–c (right) depict the effect of magnetization on the microrotation. It can be clearly seen
that the consideration of a magnetization vector not parallel to the magnetic field (i.e., σm not equal
to 0) tends to decrease microrotation as ε increases. As a consequence, lesser dissipation is added in
the flow due to the MMR term. As a result, smaller resistance to the fluid flow is anticipated, a fact
that is obvious via the slight increase of the velocity that acts opposite to the flow breaking due to
the Lorentz force. Thus, the usual effect of the magnetic energy to break the flow is now transferred
directly through the Lorentz force and MMR terms both to linear and angular momentum, respectively,
and both are breaking. Consequently, the MMR effect is in favor of the linear momentum reducing it
lesser that in the usual MHD case. It should be noticed that when σm = 0, i.e., in the usual MHD case,
the magnetic energy affects directly only the linear momentum through the Lorentz force and only
microrotation indirectly, through the velocity.

The differences in the velocity and microrotation profiles between the cases σm = 0 and σm = 1 are
depicted in Figure 3a,b, respectively, as ε varies. In the laminar Couette flow that it is considered here,
a difference of about 3% is measured at about x ∼ 0 as ε→ 1 for the velocity field. As highlighted
above, the maximal value of the difference increases as ε increases. According to the velocity difference
definition of Equation (44), its sign indicates the orientation of the σm effect, i.e., to accelerate (for
positive values) or to decelerate the flow field (for negative values). As it is shown in Figure 3a,
the MMR term has the tendency to decelerate the flow field close to the upper wall and to accelerate it
elsewhere in the channel. Thus, in contrast to the usual magnetic breaking that reduces analogously
the flow everywhere, here, the dual magnetic action results in this more complicated energy transfer.
To complete the picture, as ε→ 1 , the difference in microrotation, ∆Ω, is increased as it is shown in
Figure 3b, forming its maximum of about 75% close to the upper wall, where stronger magnetic energy
is transferred to microrotation through the MMR term. It should be noticed that each ∆Ω profile is a
direct measure of the corresponding MMR term’s spatial distribution.
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3.2. Effect of Magnetization for Various Values of the Size Effect Parameter, λ

The size effect parameter, λ, (λ = L/i) is related to the geometry of the problem through the half
height, L, and the microinertia, i, as well as the angular viscosity coefficient γ, since γ = i2η. The range
of 5 ≤ λ < 20 is investigated in the present study and this accounts for smaller particles as the values of λ
increases, according to the relative literature [37,38]. Furthermore, since L is constant, microinertia and
the corresponding angular viscosity decrease as λ increases (i.e., smaller fluid resistance). In the same
manner as before, Figure 4 demonstrates how the magnetization affects the velocity and microrotation
for different λ values and for ε = 0.5, Ha = 1, ζ = 0. The general formation of the flow field profile as λ
increases, is like the one discussed previously as ε increases, i.e., the laminar Couette flow of the study
has a weak velocity increase in the middle of the channel with σm due to the dual magnetic energy
transfer. The effect of λ is more important in microrotation distribution, since the smaller particles of
the flow rotate easier as λ increases. The dual magnetic energy breaking of the fluid’s velocities is more
intense in the microrotation breaking due to the MMR term as σm = 1. Thus, a part of the magnetic
energy directly reduces microrotation to values even less that the half in comparison to σm = 0, as seen
also in the case of Figure 2 as ε increases, and this reduction is mostly uniform along the height of
the channel.
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The effect of σm as λ varies is easier to be measured in the differences of velocity and microrotation
as they are shown in Figure 5. A difference of about 2.5% is measured in velocity as λ increases whereas,
the difference in microrotation is almost up to 100%. In contrast to the ε increase, as λ increases, ∆υ
close to the top moving wall is decreasing with tendency even to change sign, while in the rest of the
channel height the difference steadily increases with λ. Moreover, as λ increases, the MMR term make
steepest the ∆Ω distribution close to the boundary layers and reducing it in the middle of the channel.
Thus, σm is connected to the faster rotation of the smaller fluid’s particles close to the walls which
dissipates faster kinetic energy inside the microrotation boundary layers and make them thicker due to
higher λ.
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3.3. Effect of Magnetization for Various Values of the Hartmann Number, Ha

The Hartmann number, Ha, characterizes the strength of the applied magnetic field, H0, and
has a range of 0 ≤ Ha < 18 in the present analysis. In the hydrodynamic limit, no magnetic field
is applied on the flow and thus Ha takes the value of zero and σm has no effect on the flow. In this
case, the micropolar flow can be described by the classic Eringen’s model without the MHD and
MMR considerations [2]. As Hα number departures from zero and MHD is important, the effect of σm

in the linear and angular momentum is examined. Firstly, as expected, the increase of Hα tends to
decelerate the conducting fluid because of the increase of Lorentz forces, especially in the bulk of the
fluid flow, as it is shown in Figure 6 for Ha = 1, 3 and 18 when λ = 5, ε = 0.5, ζ = 0. For the maximum
value of Ha considering here, namely for Ha = 18, see Figure 6c, the fluid flow almost “freezes” as a
result of Lorentz forces impact. Since in the usual Couette flow, only the velocity of the upper wall is
kept constant and not the mean fluid’s mass flow, the application of the magnetic field slows down
the flow and reduces its velocity magnitude everywhere in the channel. This effect, which is called
Hartmann breaking, is observed in a variety of industrial applications that involve magnetic fields,
such as crystal growth techniques and liquid metal blanket of nuclear fusion reactors Since the velocity
of the present ideal flow is almost zero in most of the height of the channel as Hartmann number
increases, the magnetization parameter has no influence on the velocity profile.
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In a similar fashion as in the velocity field, as Hα increases, microrotation is very weak and tends
to zero in the bottom height of the channel, since velocity is almost zero, but maximizes in the upper
part of the channel owing to the strong shearing near the moving wall. There, the MMR term is found
to further reduce the rotation, in stronger rates for smaller Ha, but in slower rates, as Ha increases.
This behavior is measured in the differences for velocity and microrotation that are shown in Figure 7.
Overall, as the Hartmann number increases, the differences with considering or not the magnetization
effect on velocity field initially increase, while as the Hartmann number further increases the fluid
deceleration seems to prevail and thus the differences are minimized. The same trend is observed for
the differences in microrotation due to the reduction of velocity.



Symmetry 2020, 12, 148 13 of 19

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 20 

 

 
(a) (b) 

Figure 7. Difference in (a) velocity,  𝛥𝜐, and (b) microrotation, 𝛥𝛺, via considering 𝜎 = 1 or 𝜎 = 0 
for ε = 0.5, λ = 5, ζ = 0 and Ha = 0.1, 1, 3 and 18. 

Interestingly, it is observed that as 𝛨𝛼 increases, there is a range of values which gives for both 
velocity and microrotation complex number solutions. This range depends on the value of the other 
parameters. For example, regarding the case of 𝜆 = 5, 𝜀 = 0.5, 𝜁 = 0 this range is 3.6602 < 𝐻𝑎 <13.6603  for 𝜎 = 0  and 7.2474 < 𝐻𝑎 < 17.2475  for 𝜎 = 1 . Thus, when magnetization is 
considered, the minimum and the maximum values of the range, that result in the present equations, 
give growingly complex solutions. In Table 1, this range of 𝛨𝛼  complex number solutions for 
various 𝜆 and 𝜀 and 𝜎 = 0 or 𝜎 = 1 is presented for some values of the parameters, while the 
electric effect parameter 𝜁 is considered zero. It is found that, the critical 𝐻𝑎 values increase as 𝜆 
and 𝜀  increase. The fact that complex number solutions appear denote that possible unstable 
solutions are obtained, close for example to a flow bifurcation, which can be investigated via stability 
analysis methods that is beyond the scope of this study. However, they are mentioned here for the 
sake of completeness. It is also pointed out that all the analysis is done for a 2D velocity field (or, 
alternatively, a single component of the vorticity), and MHD is known for being the source of 3D 
instabilities that cannot be found in this analysis. These MHD instabilities may also be connected to 
the complex number solutions that we observed that usually mean the growth of temporal 
instabilities, i.e., a Hopf bifurcation point, that cannot also be captured by the present analysis. 

Table 1. Range of 𝐻𝑎 complex number solution for various 𝜆, 𝜀, 𝜎 , and 𝛨𝛼. 𝝀 𝜺 𝝈𝒎 𝑯𝒂 
5 0.2 0 2.8989–6.8990 
5 0.2 1 4.9282–8.9283 
5 0.9 0 4.0766–22.0767 
5 0.9 1 9.4932–9.4933 

20 0.2 0 11.5959–27.5960 
20 0.2 1 19.7128–35.7129 
20 0.9 0 16.3067–88.3068 
20 0.9 1 37.9729–109.9730 

3.4. Effect of Magnetization for Various Values of the Electric Effect Parameter, ζ 

The electric effect parameter, 𝜁, characterizes the strength of the applied electric field, 𝐸 , which 
is a flow driving force for the present configuration and it is studied in the range of 0.1 ≤ 𝜁 < 15. 
When 𝜁 is zero, no electric field is applied on the flow (𝐸 = 0) and the usual MHD Couette flow is 
recovered. In all the cases studied so far, the electric field was kept zero i.e., 𝜁 = 0  to avoid 
modifications of the usual Couette flow characteristics. Figure 8 illustrates the effect of magnetization 
on velocity and microrotation for different non-zero values of 𝜁 and for ε = 0.5, λ = 5, Ha = 1. As it 
was expected, as 𝜁 increases, the strong electric body force reverses the magnetic breaking, as shown 
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Interestingly, it is observed that as Hα increases, there is a range of values which gives for both
velocity and microrotation complex number solutions. This range depends on the value of the other
parameters. For example, regarding the case of λ = 5, ε = 0.5, ζ = 0 this range is 3.6602 < Ha < 13.6603
for σm = 0 and 7.2474 < Ha < 17.2475 for σm = 1. Thus, when magnetization is considered, the
minimum and the maximum values of the range, that result in the present equations, give growingly
complex solutions. In Table 1, this range of Hα complex number solutions for various λ and ε and
σm = 0 or σm = 1 is presented for some values of the parameters, while the electric effect parameter
ζ is considered zero. It is found that, the critical Ha values increase as λ and ε increase. The fact
that complex number solutions appear denote that possible unstable solutions are obtained, close for
example to a flow bifurcation, which can be investigated via stability analysis methods that is beyond
the scope of this study. However, they are mentioned here for the sake of completeness. It is also
pointed out that all the analysis is done for a 2D velocity field (or, alternatively, a single component of
the vorticity), and MHD is known for being the source of 3D instabilities that cannot be found in this
analysis. These MHD instabilities may also be connected to the complex number solutions that we
observed that usually mean the growth of temporal instabilities, i.e., a Hopf bifurcation point, that
cannot also be captured by the present analysis.

Table 1. Range of Ha complex number solution for various λ, ε, σm, and Hα.

λ ε σm Ha

5 0.2 0 2.8989–6.8990
5 0.2 1 4.9282–8.9283
5 0.9 0 4.0766–22.0767
5 0.9 1 9.4932–9.4933

20 0.2 0 11.5959–27.5960
20 0.2 1 19.7128–35.7129
20 0.9 0 16.3067–88.3068
20 0.9 1 37.9729–109.9730

3.4. Effect of Magnetization for Various Values of the Electric Effect Parameter, ζ

The electric effect parameter, ζ, characterizes the strength of the applied electric field, E0, which is
a flow driving force for the present configuration and it is studied in the range of 0.1 ≤ ζ < 15. When ζ
is zero, no electric field is applied on the flow (E0 = 0) and the usual MHD Couette flow is recovered.
In all the cases studied so far, the electric field was kept zero i.e., ζ = 0 to avoid modifications of the
usual Couette flow characteristics. Figure 8 illustrates the effect of magnetization on velocity and
microrotation for different non-zero values of ζ and for ε = 0.5, λ = 5, Ha = 1. As it was expected, as ζ
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increases, the strong electric body force reverses the magnetic breaking, as shown in Figure 8b (left),
and accelerates the fluid to obtain a parabolic, similarly to a Poiseuille flow velocity profile.
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For small ζ, the magnetic field decelerates the flow and the microrotation distribution is like the
previous cases. However, as ζ increases the tendency of Ω is reversed. Initially, its maximum value is
found near the lower wall than in the top one, Figure 8b (right), and as ζ increases, Ω in the upper part
of the channel reverses its sign, shape, and even increases in magnitude everywhere in the channel as
the velocity magnitude increases strongly. When magnetization is considered, both the velocity and
microrotation decrease for all the cases considered here through the additional dissipation added due
to the MMR term.

The MMR effect in the flow with ζ > 0, that is now more convective, can be measured easier
through the profiles of the velocity and microrotation differences due to σm as they were shown in
Figure 9. The effect of the MMR term is now up to 45% and 600% in the velocity and microrotation fields,
respectively, for the higher value of ζ considered here. Although for the ζ = 0.1 case the difference
in the velocity and microrotation is positive, as ζ increases, this difference is getting negative for the
velocity and of sinusoidal shape for the microrotation. Thus, the MMR term initially accelerates the
flow due to the reduced magnetic breaking, but when momentum is stronger, acts as a dissipation term.
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3.5. Effect of Magnetization on Skin Friction, C f

In this subsection, the coefficient of skin friction, C f , has been calculated for the upper plate of the
present Couette flow and is compared against the Newtonian, the Newtonian MHD, and the micropolar
Couette flows by neglecting magnetization, i.e., for σm = 0. In the case of the Newtonian Couette
flow, the usual mathematical relationship of C f Newtonian = 1/Re is used that can be applied for the
laminar present flow, while for the MHD Couette flow the relation C f MHD = (4/Re)(dυMHD/dx)

∣∣∣
x=1

is utilized [39]. The solution for the MHD linear velocity was derived from Kiema et al. [40] and
it is υMHD =

(
eHa(3+x)

− eHa(1−x)
)
/
(
−1 + e4Ha

)
. For the micropolar Couette flow, the solution of

Shiwada-Tanahashi’s model is used, which is equivalent to the solutions of Eringen’s model when the
magnetization, the magnetic and the electric field are ignored (σm = 0, ζ = 0, Ha = 0).

The coefficient of skin friction for the five cases are given in Table 2 for various Re numbers. In case
of MHD, Hα = 1 is considered, while in micropolar flows ε = 0.5 and λ = 5 are applied. In all cases,
as expected, skin friction coefficient decreases with increasing the Reynolds number. Besides, it can be
noted that C f pertaining to micropolar Couette flow is approximately half compared to that of the
Newtonian flow (54% reduction). This can be noticed in various studies of skin friction coefficient
such as Pal et al. [41] and Hoyt et al. [42], that showed experimentally that fluids which contain
minute polymeric additives exhibit a considerable reduction in the skin friction (about 25–30%). This
phenomenon can be explained very well by micropolar fluid theory. When a magnetic field is applied
at the flow, the skin friction coefficient increases in all flow cases (Newtonian MHD, σm = 0, σm = 1).
In the case of Newtonian MHD flow, there is a great increase of 315% compared to the Newtonian flow,
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while for micropolar flows, when the magnetic field is applied, the skin friction coefficient increases by
more than 60%.

Table 2. C f for various Re numbers.

Re
Cf

Newtonian MHD Micropolar σm = 0 σm = 1 δσm

10 0.1000 0.4149 0.0459 0.0729 0.0802 0.73
50 0.0200 0.0830 0.0092 0.0146 0.0160 0.14
100 0.0100 0.0415 0.0046 0.0073 0.0080 0.07
200 0.0050 0.0207 0.0023 0.0036 0.0040 0.04
300 0.0033 0.0138 0.0015 0.0024 0.0027 0.03
400 0.0025 0.0104 0.0011 0.0018 0.0020 0.02
500 0.0020 0.0083 0.0009 0.0015 0.0016 0.01
600 0.0017 0.0069 0.0008 0.0012 0.0013 0.01
700 0.0014 0.0059 0.0007 0.0010 0.0011 0.01
800 0.0013 0.0052 0.0006 0.0009 0.0010 0.01
900 0.0011 0.0046 0.0005 0.0008 0.0009 0.01

1000 0.0010 0.0041 0.0004 0.0007 0.0008 0.01

Considering micropolar flow for which magnetization is included (σm = 1), the skin friction
coefficient is constantly higher than the case of microrotation when the magnetization is neglected
(σm = 0). More specifically, in the last column of Table 2, the absolute difference between the two
cases with σm = 0 and 1 is calculated by: δσm =

(
C f ,σm=1 −C f ,σm=0

)
·100%. Hence, the relative

difference is 0.73% for Re = 10, while it starts decreasing until a threshold value is established, namely
δσm = 0.01%. Considering the micropolar flow in which magnetization is included (σm = 1), the skin
friction coefficient is slightly higher than the case of microrotation when the magnetization is neglected
(σm = 0), i.e., a 16% increase.

4. Conclusions

The present paper deals with the investigation of a micropolar Couette flow under uniform
magnetic and electric fields. The dimensionless equations, that are similar to the Shizawa-Tanahashi
model [29], are solved analytically for the velocity and microrotation. The main focus is on the effect of
micromagnetorotation (MMR) that appears through the magnetization on the MHD micropolar flow.
The effects of various important dimensionless parameters of the flow on velocity and microrotation
are investigated along with skin friction coefficient. It is inferred that, both velocity and microrotation
magnitudes, as well as their differences between solutions with and without the magnetization term,
increase as λ and ε increase. Moreover, these differences for both velocity and microrotation decrease
for high Hartmann number values. The difference for both velocity and microrotation also increases
when the applied electric field increases. Furthermore, the skin friction coefficient of a micropolar
Couette flow is smaller than the classical Newtonian Couette flow. When a magnetic field is applied,
the skin friction coefficient increases for both Newtonian and micropolar Couette flow. With respect to
the magnetization term in an MHD micropolar Couette flow, skin friction coefficient increases about
16% compared to an MHD micropolar Couette flow whereby the magnetization term in neglected.

Thus, reflecting on the present study, it is found that the micromagnetorotation term in the case of
an MHD micropolar flow, that is connected to the magnetization of the fluid, is an important factor
of the flow that is so far ignored. Thus, more intensive studies of this term should be followed to
investigate deeply the MMR term effect on the micropolar fluids flow.
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Appendix A

All constants used in the solution of linear velocity υ (Equation (38)) and microrotation Ω
(Equation (39)) are:

A =

√
ξ1 −

√
ξ1

2
− 4ξ2

√
2

, (A1)

B =

√
ξ1 +

√
ξ1

2
− 4ξ2

√
2

, (A2)

ϕ1 = 2δ+ Z, (A3)

ϕ2 = 2δ+ Z− B2Λ, (A4)

ϕ3 = 2δ+ Z−A2Λ, (A5)

ϕ4 = −2δ−Z +
(
A2
−AB + B2

)
Λ, (A6)

ϕ5 = −2δ−Z +
(
A2 + AB + B2

)
Λ, (A7)

ϕ6 = 2Aδ− 2Bδ+ AZ− BZ−A3Λ + B3Λ, (A8)

ψ1 = 2
(
1 + e4A + e4B

− 4e2(A+B) + e4(A+B)
)
, (A9)

ψ2 = e2A
− e2B, (A10)

ψ3 = 1 + e4B
− 2e2(A+B), (A11)

ψ4 = 1 + e4A
− 2e2(A+B), (A12)

κ1 =
(
−1 + e4A

)(
−1 + e4B

)
A2ϕ1, (A13)

κ2 =
(
−1 + e4A

)(
−1 + e4B

)
A4Λ

(
2ϕ1 + A2Λ

)
, (A14)

κ3 = (ξ2 − ξ3)
(
−2e2ABϕ2 − e2B(ξ2 − ξ3)ϕ4 + e4A+2B(A− B)ϕ5

)
+ξ3

(
2e2(A+B)Bϕ2 + e4A(A + B)ϕ4 + ϕ6

)
,

(A15)

κ4 = (ξ2 − ξ3)
(
2e2BAϕ3 + e2A(A + B)ϕ4 + e2A+4B(A− B)ϕ5

)
+ξ3

(
−2e2(A+B)Aϕ3 − e4B(A + B)ϕ4 + ϕ6

) (A16)

κ5 =
(
−e3A + eA+2B

)
Bϕ2(

(
−1 + e4B

)
B
(
ξ2 +

(
−1 + e2A

)
ξ3

)
ϕ2

+((
(
1 + e2A

)(
−1 + e2B

)2
ξ3 − ξ2ψ3)A3Λ −Aϕ1)),

(A17)

κ6 =
(
−1 + e4A

)
A
(
ξ2 +

(
−1 + e2B

)
ξ3

)
, (A18)

κ7 =
(
−1 + e4B

)
B
(
ξ2 +

(
−1 + e2A

)
ξ3

)
, (A19)

κ8 = Bϕ2(−
(
−1 + e2A

)2(
1 + e2B

)
ξ3 + ξ2ψ4), (A20)

f1 = κ7ϕ2 + A(
(
1 + e2A

)(
−1 + e2B

)2
ξ3 − ξ2ψ3)

(
A2Λ −ϕ1

)
, (A21)

f2 = κ8 +
(
1− e4A

)
A3Λ

(
ξ2 +

(
−1 + e2B

)
ξ3

)
+ κ6ϕ1, (A22)
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f3 =
(
κ1 − κ2 + Bϕ2

((
−1 + e4A

)(
−1 + e4B

)
Bϕ2 + A

(
A2Λ −ϕ1

)
ψ1

))
ψ2, (A23)

h1 =
(
−e3A + eA+2B

)
A2ϕ2 f1, (A24)

h2 = ξ2 f3ψ2. (A25)
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