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Abstract This paper presents an innovated method for
the discrimination of groundwater samples in common
groups representing the hydrogeological units from where
they have been pumped. Thismethod proved very efficient
even in areas with complex hydrogeological regimes. The
proposed method requires chemical analyses of water
samples only for major ions, meaning that it is applicable
to most of cases worldwide. Another benefit of the method
is that it gives a further insight of the aquifer
hydrogeochemistry as it provides the ions that are respon-
sible for the discrimination of the group. The procedure
begins with cluster analysis of the dataset in order to
classify the samples in the corresponding hydrogeological
unit. The feasibility of the method is proven from the fact
that the samples of volcanic origin were separated into two
different clusters, namely the lava units and the pyroclas-
tic–ignimbritic aquifer. The second step is the discriminant
analysis of the data which provides the functions that
distinguish the groups from each other and the most sig-
nificant variables that define the hydrochemical

composition of the aquifer. The whole procedure was
highly successful as the 94.7 % of the samples were
classified to the correct aquifer system. Finally, the resulted
functions can be safely used to categorize samples of either
unknown or doubtful origin improving thus the quality and
the size of existing hydrochemical databases.
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Abbreviations
CA Cluster analysis
DA Discriminant analysis
PCA Principal component analysis
FA Factor analysis
CCDA Combined cluster and discriminant analysis
CART Classification and regression tree
BRT Boosted regression tree
RF Random forest classification

Introduction

During the last decades, many researchers discovered the
usefulness of multivariate statistical analysis methods for
the investigation and discrimination of sources of variation
in water quality. This statistical technique which embodies
principal component analysis (PCA), factor analysis (FA),
cluster analysis (CA), and discriminant analysis (DA) has
been widely used in hydrology and hydrogeology. Several
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studies concern river waters (Zhang et al. 2011; Ajorlo
et al. 2013; Li et al. 2015;Muangthong and Shrestha 2015;
Phung et al. 2015; Tanos et al. 2015), lakewaters (Moment
and Zehr 1998; Papatheodorou et al. 2006; Yang et al.
2010; Kovács et al. 2014), or groundwater (Lambrakis
et al. 2004; Papatheodorou et al. 2007; Panagopoulos
and Panagiotaras 2011; Matiatos et al. 2014; Omonona
et al. 2014; Sun 2014; Qian et al. 2016), while others focus
in the salinization process (Petalas and Anagnostopoulos
2006; Mondal et al. 2010; Mondal et al. 2011; Arslan
2013). Filzmoser et al. (2012) and Asante and Kreamer
(2015) pointed out the importance of data transformation
prior to the application of standard DA methods. Rao and
Srinivas (2006) tested different cluster algorithms to deter-
mine their effectiveness in regionalization and recom-
mended the use of Ward’s linkage method and K-means
algorithms. Lin and Wang (2006) performed CA and DA
of hydrological factors in one step, proposing a new
method.

Usually, the hydrogeologists face problems in pro-
cessing the hydrochemical data, because they do not
know which aquifer unit a pumping well taps, since its
lithological column is not always available. Such prob-
lems are more intense in cases of multilayer aquifer
systems, where two or more aquifers are superimposed,
rendering the hydrogeochemical interpretation of data as
a complex and debatable issue. The design of a reliable
water management plan requires the accurate identifica-
tion of the origin of the groundwater samples in order to
be deduced on proper hydrogeological and
hydrochemical information.

Recently, some researchers used more sophisticated
machine learning models for classifying water samples
to groups. Classification and regression tree (CART) is a
non-parametric regression technique that Bgrows^ a de-
cision tree based on a binary partitioning algorithm that
recursively splits the data until groups either are homo-
geneous or contain not less observations than a user-
defined threshold (Aertsen et al. 2010). Boosted regres-
sion tree (BRT) combines regression from CART to
boosting method to create a combined modeling ap-
proach. Boosting is a forward, stepwise procedure,
where tree models are fitted interactively to a subset of
the training data (Aertsen et al. 2010). Random forest
classification (RF) is a bagging based method, which
generates a large number of trees using bootstrapping,
and each tree is then handled using a randomized subset
of the predictors (Breiman 2001). Naghibi et al. (2016)
compared the results of CART, BRT, and RF in

groundwater spring potential mapping and concluded
that BRT gave the most accurate results (81.03 %),
followed by CART and RF (78.70 and 71.19 %, respec-
tively). On the other hand, Baudron et al. (2013)
achieved very high accuracy (90.6 %) in the classifica-
tion of a large number of water samples applying RF
model compared with the results produced using CART
(88 %) and linear DA (84.8 %).

This paper provides a simple multivariate statistical
procedure for the identification of the hydrogeological
unit in which a groundwater sample was taken based on
commonly available major ions geochemistry. For this
aim, a combination of unsupervised (CA) and super-
vised (linear DA [LDA]) statistical methods was used.
Hierarchical CAwas used to categorize the samples into
preconceived groups and DA to construct equations for
the discrimination between groups and the evaluation of
the results. By applying the proposed technique, the
classification of unknown origin’s samples to the appro-
priate hydrogeological group with a very high degree of
reliability is feasible.

Study area

Lesvos is a typical Mediterranean island, laying in the
northeastern Aegean Sea (Fig. 1). It is the third largest
island of Greece covering a total area of 1632 km2with a
population of approximately 100,000 inhabitants.
Lesvos is a concessive island with respect to the avail-
ability of water resources, contrary to the rest of the
Aegean islands, because of the presence of permeable
rocks hosting large aquifer bodies as well as the rela-
tively high precipitation height. According to the data of
the meteorological network of Lesvos, the mean annual
rainfall height and temperature is 521 mm and 16.7 °C,
respectively (hydrological period 2003–2013). The rain-
iest period is between December and February, whereas
the period of lowest precipitation is between June and
August.

Geological and hydrogeological setting

The geological bedrock of Lesvos is composed of an
autochthonous metamorphic series, which is
overthrusted by two allochthonous units representing
the volcano-sedimentary and the ophiolitic nappe.
These formations are mainly exposed in the
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southeastern part of the island (Fig. 1). The autochtho-
nous series consists of a Permo-Carboniferous unit with
schists and marbles and a Triassic unit with marbles and
phyllites (Hecht 1972). The volcano-sedimentary tec-
tonic nappe is represented by a unit of green schists and
meta-basaltic tuffs and a sedimentary unit with crystallic
limestones and dolomites (Katsikatsos et al. 1982). The
tectonic nappe of ophiolites has been further distin-
guished in two different units: the upper unit of ultra-
mafic rocks, such as peridotites, pyroxene–peridotites,
and olivinites, with variable degree of serpentinization

and the lower unit with amphibolites and amphibolitic
schists (Katsikatsos et al. 1982).

The largest part of the island is occupied by volcanic
rocks of Late Miocene age, which have been assembled
in four general units (Hecht 1972): (i) a lower unit with
latitic and andesitic lavas, (ii) pyroclastic layers with
lapilli tuffs and tuff breccias, (iii) ignimbrite sheets,
and (iv) an upper unit of dacitic, latitic, and latitandesitic
lavas.

The Pliocene deposits of Lesvos are composed of
marly limestones, sandstones, and conglomerates.

Fig. 1 Geological map of the study area (modified by Hecht 1972)
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Finally, the Quaternary alluvial deposits are composed
of alluvial fans, debris cones, and loose sediments of
silts, sands, and pebbles.

From a hydrogeological point of view, a very
important aquifer was developed in the metamorphic
basement of Lesvos (Fig. 2). In a regional scale, the
marbles of the autochthonous series and the lime-
stones and dolomites of the volcano-sedimentary
nappe could be considered as a uniform karstic aqui-
fer of high capacity. This carbonate aquifer is mainly
confined due to the presence of impermeable schist
layers, except of the sites structured only by lime-
stones and dolomites where the karstic aquifer is
unconfined.

Generally, the ophiolitic sequence of Lesvos (Fig. 2)
constitutes a poor aquifer or a practically impermeable
formation. However, the upper layers of peridotites have
suffered from strong alteration (serpentiniosis) and
weathering, forming unconfined aquifers of low

capacity. On the other hand, high capacity ophiolitic
aquifers occur in faulted and fractured zones due to the
development of high secondary porosity.

The volcanic rocks of Lesvos (Fig. 2) constitute
high-capacity aquifers which are confined by imper-
meable volcanic materials. These aquifers are charac-
terized by double porosity. Especially, the lava flows
have considerable pore space, and combined with
columnar joints, as well as faults and fractures of
tectonic origin, they form high productive aquifer
bodies. The ignimbritic and pyroclastic layers could
be classified as permeable geological units, especially
when tectonic stress has formed fractures and faults
acting as passages that allow water to move vertically
and horizontally.

Finally, the alluvial deposits (Fig. 2) host extended
unconfined aquifers which are recharged mainly from
precipitation as well as from laterally inflows from the
adjacent metamorphic and volcanic aquifers.

Fig. 2 Hydrogeological map of Lesvos Island showing the sampling locations
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Materials and methods

Sampling

In this study, the hydrochemical data published in
various reports of the Institute of Geological and
Minera l Explora t ion of Greece (I .G.M.E.)
(Giannoulopoulos and Lappas 2010) were used. The
hydrochemical network is composed by 57 sampling
locations (Fig. 2) consisting of wells and boreholes,
with variable depths ranging from 30 to 200 m below
ground level. The samples are split in four distinct
groups, representing different hydrogeological units
according to all the available hydrogeological and
hydrochemical information obtained by the database
of I.G.M.E. (Geological maps, cross sections, borehole
data, etc) as well as in situ observations. The first
group comprises samples derived from boreholes
screened in the carbonate aquifers, while the second
group contains samples belonging to the ophiolitic
aquifer of Lesvos. The third group of cases represents
the volcanic aquifer of the island and specifically the
lava units. The fourth group has volcanic origin which
contains samples from the pyroclastic and ignimbritic
aquifers. Consequently, each sample classification was
known in advance.

The sampling campaign took place during May
2006, and the chemical analyses of major ions were
performed at the laboratory of I.G.M.E. according to
APHA (1998) methods. The samples were collected at
the well-pump outflow in two polyethylene bottles, after
at least 1 h pumping. All samples were filtered on-site
through 0.45-μm pore size filters. The first sample of
0.5 L volume was acidified with 2 mL of 65 % HNO3

for cation analysis. The second non-acidified aliquot
(1 L) was used to determine bicarbonates (HCO3

−) and
chloride (Cl−) by titrimetry. Sulfates (SO4

2−) and nitrates
(NO3

−) were determined using a spectrophotometer.
Ca2+ and Mg2+ were measured using the atomic absorp-
tion method in a sprectrophotometer, while Na+ and K+

were measured in a flame photometer. After the removal
of the outliers, the total number of data examined (ob-
servations × variables) was 456. The identification of
outliers was made by using the Grubbs test according to
which a case is labeled as outlier if its value deviates
from the mean value for more than 3∙s times, where s is
the standard deviation. The deleted outliers were four.
Table 1 presents a statistical report of the major ion
concentrations of each aquifer.

Chemometric methods

Hierarchical cluster analysis

CA consists of different techniques that classify observa-
tions in groups (clusters) in such a way that the resulting
groups are distinct from each other and groupmembers are
very similar to each other (Davis 1986; Afifi and Clark
1996; Brown 1998). This procedure that starts with n
groups (each containing one case) and results in one group
containing all (n) cases is called hierarchical cluster. Series
of data describing the concentration of water sample in
chemical elements are the input variables of the algorithm.
The procedure transforms the data in order to standardize
deviation to unity before computing proximities.

The next step is to cluster the data depending on their
values. The basic criterion for any clustering is distance.
There is a variety of technics for measuring and deter-
mining similarity. For the type of data used in this
analysis, the Euclidean distance is considered the best
choice to measure similarity. Objects that are near each
other should belong to the same cluster, and objects that
are far from each other should belong to different clus-
ters since they are considered to be different.

The decision of which clusters will be merged is based
on the minimization of the loss of information from
joining two groups. This is the basic idea in Ward’s
method that is used for continuous valued data and
provides more equal in number groups. It is a very
efficient method and it uses the Euclidean distance to
calculate an analysis of variance approach to evaluate the
distances between clusters. The basic output of this pro-
cedure is a dendrogram presenting the path of merging
clusters that guides the researcher to select the number of
clusters. The data are best described with a number of
clusters that have large distances between them.

Discriminant analysis

DA builds one or more functions that predict a group
membership (Davis 1986; Afifi and Clark 1996; Brown
1998). Series of water sample hydrochemical data and
their grouping are the input variables of the algorithm. DA
combines the information from hydrochemical data into
functions that are used in order to decide in which group a
new sample belongs. DA is meaningful only if the orig-
inal classification of cases in groups is preconceived. This
is the reason why CA is used first in order to ensure in
which group each point sample belongs.
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Table 1 Average, maximum, and minimum values with standard deviations of groundwater quality parameters at different aquifer systems
in Lesvos

Parameter Aquifer system

Carbonate n = 17 Ophiolitic n = 15 Lava units n = 21 Ignimbritic n = 4

Ca2+ Average 71.3 34.5 33.6 17.7

Max 98.0 62.5 67.2 33.1

Min 48.9 6.4 10.4 6.4

SD 13.3 19.2 14.4 13.1

Skewness 0.4 0.0 0.3 1.0

Mg2+ Average 22.7 85.8 14.1 8.8

Max 49.9 157.0 19.9 17.9

Min 5.5 53.0 2.9 1.0

SD 14.5 30.7 4.5 7.0

Skewness 0.3 1.3 −1.2 1.3

Na+ Average 19.4 23.2 36.8 142.1

Max 35.3 35.6 83.0 152.0

Min 6.1 7.6 17.0 134.0

SD 8.2 9.3 17.7 8.3

Skewness 0.1 −0.1 2.8 −1.7
K+ Average 0.9 1.3 6.3 4.5

Max 2.6 4.7 12.6 7.8

Min 0.4 0.4 2.2 2.2

SD 0.6 1.2 2.7 2.5

Skewness 1.3 2.2 0.5 0.5

HCO3
− Average 267.9 480.0 140.8 264.5

Max 421.0 824.0 190.0 303.0

Min 154.0 333.0 68.3 222.1

SD 78.8 121.8 37.4 35.4

Skewness 0.2 1.7 0.9 0.5

Cl− Average 38.4 45.8 62.0 102.7

Max 69.1 81.5 149.0 138.0

Min 14.2 15.6 24.8 74.5

SD 17.3 17.1 35.0 29.3

Skewness 0.3 0.2 1.1 0.3

SO4
2− Average 32.1 17.7 22.2 32.7

Max 53.0 43.2 52.0 58.6

Min 11.4 0.5 5.4 3.1

SD 13.0 13.0 14.7 23.3

Skewness 0.1 0.7 0.7 0.3

NO3
− Average 9.8 17.2 7.6 7.0

Max 37.2 83.7 34.8 24.8

Min 0.1 0.0 0.1 0.1

SD 11.7 24.0 9.4 11.9

Skewness 1.0 1.9 2.0 1.7

Concentrations are expressed in mg/L
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A number of linear coefficients (eigenvectors), as
many as different variables, are extracted from a sample
of cases (for which group membership is known) as
linear combinations of predictor variables. Predictor
variables are selected in such a way so as to provide
the best discrimination between groups, and the proce-
dure takes care of the minimization of misclassification
by maximizing the variance between groups to the
variance within-group. During the procedure, several
tests have been made to test the significance of each
variable included in the equations and the validation of
the procedure.

Of great importance is the structure of each group,
where the correlation of the predictor variables and the
discriminant scores (loadings produced by canonical
functions) indicate the most significant variable for each
function and therefore for each group. The contribution
of each variable to the corresponding discriminant func-
tion is presented in a structure matrix.

The prior assignment of a sample case to a group is
made considering equal probabilities, and it is the
starting point of the analysis. When the analysis is
completed, the final step is to form the discriminant
functions with the calculated coefficients. A case is
categorized in the group which the corresponding dis-
criminant function has the greatest value. These equa-
tions can be used for the classification of any other new
sample case in one of the groups.

Cross validation is achieved through the leave-one-
out classification. This technique, called also the
Jackknife technique, calculates the discrimination equa-
tions from all but one case and uses them to predict the
membership of that case. Since the procedure is repeated
for every case, this technique produces more unbiased
estimations and ensures the minimization of incorrect
classification. The overall percentage of succeeded clas-
sifications indicates the validity of the model.

Conclusively, the data analysis is performed using
the algorithm depicted in the flowchart of Fig. 3.

Results and discussion

Combined cluster and discriminant analysis (CCDA)
has been used from Lambrakis et al. (2004) in order to
find the significant parameters that influence the quality
of groundwater in an aquifer system. CA classified the
samples into two groups, and DA certified that this

classification was 100 % correct. Furthermore, DA in-
dicated that SO4

2− and NO3
− are responsible for the

discrimination among groups, so the contamination of
groundwater from fertilizers defines the hydrochemical
character of the aquifer. Pati et al. (2014) applied CCDA
in time series of hydrochemical data of two stations
intended to develop a water quality index. CA classified
the data into three major groups and, DA generated the
corresponding discriminant functions. The hit ratio of
DA was about 90 %. Kovács et al. (2014) and Tanos
et al. (2015) used CCDA in order to refine monitoring
networks by aggregating similar sampling locations.
Thus, they achieved a cost cut without significant loss
of information.

The novelty of our study is the use of CCDA in
complicated hydrogeological regimes where reliable in-
formation about the hydrochemical origin of water sam-
ples is missing. In such cases, CA can be used in order to
categorize the samples into groups which have similar
hydrochemical properties corresponding to specific
hydrogeological units. LDA can be used for the valida-
tion of the results of CA, according to the hit ratio. LDA
provides the procedure to categorize samples of un-
known or doubtful origin into the correct aquifer system.
Furthermore, LDA evaluates the results, providing the
most significant parameters that explain the hydrogeo-
chemical properties of the aquifers. Finally, another
important benefit of CCDA is the use of methods that
are incorporated in well known and wide used software
like SPSS, Statgraphics, Minitab, etc. The proposed
method was executed using the Statistical Package for
Social Science (SPSS v.20).

The hierarchical CA was applied by using Ward’s
linkage method for sample classification and the
square Euclidean distance as the measure of similar-
ity. The variables entered in CA were carefully se-
lected to be related but not to be correlated in order to
avoid a misleading solution. In this context, the var-
iables Ca2+, Mg2+, Na+, K+, HCO3

−, Cl−, SO4
2−, and

NO3
− from each sampling point were included in the

analysis. Moreover, in order to equalize the effect of
variables measured on different scales, the data
values were standardized prior to the clustering
process.

Figure 4 pictures the dendrogram produced using
Ward’s method. It is obtained that the samples of the
study area can be classified in four distinct groups.
Each sample is correctly classified into one of the
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four groups defined by I.G.M.E (100 % correct clas-
sification). The formation of this group indicates the
discriminating power of CA and its usefulness in the
hydrogeochemical research. Cluster membership of
each case was saved as a new variable in order to be
used in DA.

DA uses as independent variables the same vari-
ables applied in CA, which are data values of Ca2+,
Mg2+, Na+, K+, HCO3

−, Cl−, SO4
2−, and NO3

− from
each sampling point. The choice of variables includ-
ed in discriminant equations is tested according to
its contribution to the prediction. The first test is

whether a variable discriminates groups or, in other
words, if there are differences among group means.
Since all variables have different group means, as it
is shown in the last column of Table 2, they are
included in the model. The discriminant ability of
each predicted variable is tested in Table 2, where
the variables that have smaller values on Wilk’s
lambda are those who contribute more to the dis-
criminant functions. The last column presents the
significance of the null hypothesis of equality of
means in each group. It is apparent that only NO3

−

has equal means among groups (sig = 0.293 > 0.05
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in Table 2), and therefore, it is removed from the
analysis. This is an expected result since nitrate
contamination of groundwater has anthropogenic
and non-geogenic origin. Consequently, nitrate con-
centration in each sampling point depends on human
activities and not on the geochemical and mineral-
ogical compositions of the aquifer.

The Box’sM test showed that variances among clas-
ses were not equal, but further test using different sep-
arate matrices did not alter the results. Corresponding to
eigenvalues, tests also showed that the calculated dis-
criminant functions have considerable discriminated
power.

Canonical discriminant functions are produced
from the discriminant functions and actually test the
discriminant ability of the discriminant functions.
The number of canonical functions is always one less
than the number of discriminant functions. The per-
centages of the variance described by each discrimi-
nant function are presented in Table 3. The first
canonical discriminant function describes 63 % of
total variance, the second 21 %, and the last one
16 %, respectively. In the same table, it is verified
that the independent variables used in discriminant
functions are highly correlated to the corresponding
predicted variable.

The structure matrix (Table 4) presents the hierar-
chical sorting of predicted variables for each func-
tion. The most significant variable for each function
and therefore for each group is marked in the matrix
with an asterisk. It is noted that each chemical pa-
rameter is characterized as most significant for a
specific canonical function when it has the greatest
discriminant ability, i.e., it is the greatest number in
each row.

The carbonate sequence constitutes the first discrim-
inated group and the most important variables for the
first function that discriminates it from other groups are
Na+ and Cl−. This is expected as the groundwater of the
aquifer is fresher and not contaminated by seawater.

Table 2 Tests of equality of group means

Wilks’ Lambda F df1 df2 Sig.

Ca2+ 0.399 26.639 3 53 0.000

Mg2+ 0.243 55.086 3 53 0.000

Na+ 0.143 105.744 3 53 0.000

K+ 0.346 33.325 3 53 0.000

HCO3
− 0.251 52.647 3 53 0.000

Cl− 0.692 7.851 3 53 0.000

SO4
2− 0.842 3.321 3 53 0.027

NO3
− 0.933 1.273 3 53 0.293

Fig. 4 Dendrogram presenting the merging path of clusters using
Ward’s method and Euclidean Distances

Table 3 Eigenvalues and the goodness of fit of the model

Canonical
function

Eigenvalue % of
Variance

Cumulative
%

Canonical
correlation

1 9.678 62.9 62.9 0.952

2 3.245 21.1 84.0 0.874

3 2.453 16.0 100.0 0.843
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This is confirmed from Table 1, where the sodium and
chloride contents are less in the carbonate aquifer com-
pared to the others.

The second group of samples represents the
ophiolitic aquifer of Lesvos, and the most important
variables for the discriminant function are Mg2+ and
HCO3

−. This is in agreement with the hydrochemical
data of Table 1, as these ions have increased concen-
trations in the ophiolitic aquifer compared to the
other aquifers. The contribution of these ions to the
discriminating power of the second function is relat-
ed with the geochemical and mineralogical properties
of the ophiolites. The basic mineralogical composi-
tion of these rocks is olivine [(Mg,Fe2+)2SiO4] +
o r t h o p y r o x e n e (M g S i O 3 ) + s e r p e n t i n e
[(Mg,Fe)3Si2O5(OH)4], indicating that the increased
Mg2+ concentrations of the groundwater originate
from the dissolution and disassociation of these min-
erals. Moreover, the increased content of Mg2+ and
HCO3

− ions in the groundwater samples of this group
is attributed to the presence of magnesite (MgHCO3)
dykes. According to Chatzidimitriadis and Allagianis
(1972), these dykes have been formed in faulted and
fractured zones of the ophiolites during the
serpentiniosis process.

The third discrimination function separates the
volcanic sequences of Lesvos Island based on Ca2+,
K+, and SO4

2− concentrations of groundwater
(Table 4). The lava units are high-K shoshonitic
rocks associated with Ca-alkaline volcanism, while
the general mineral assemblage contains Ca-
plagioclase (CaAlSi3O8), K-feldspar (KAlSi3O8),
and clinopyroxene (CaMgSi2O6). On the other hand,
the pyroclastic layers and the ignimbritic sheets are

acid volcanic materials containing mainly Na-
plagioclase (NaAlSi3O8) and K-feldspars (Pe-Piper
and Piper 1992; Kelepertsis 1993). Consequently,
the aquifers of lava units are enriched in Ca2+ com-
pared to the pyroclastic and ignimbritic aquifers
which are enriched in Na+ (Table 1).

There are several ways to predict a case member-
ship in a group. One way is the use of information
for each group centroid as presented in Table 5.
Cases with function scores close to a group centroid
are predicted as belonging to the same group. Thus,
if a case has all function scores positive, it should
belong to group 4, whereas, if a case has positive
score only for the third function, it should belong to
group 1.

The most significant way to predict a group mem-
bership is through the discriminant functions, one for
each group (Table 6). Each case is classified in the
group that the corresponding function has the greater
value.

Table 6 presents the coefficients of the discriminant
functions that in the end take the following form:

Table 6 Fisher’s linear discriminant functions coefficients for
four groups using Ward’s method

Parameter Ward method

1 2 3 4

Ca2+ 0.385 0.197 0.082 −0.033
Mg2+ 0.023 0.097 −0.047 −0.179
Na+ 0.101 0.057 0.184 0.918

K+ 0.050 0.442 1.762 1.393

HCO3
− 0.032 0.059 0.028 0.046

Cl− −0.082 −0.011 −0.016 −0.070
SO4

2− −0.084 −0.163 −0.064 −0.110
(Constant) −17.776 −22.418 −12.159 −69.366

Table 5 Unstandardized canonical discriminant functions evalu-
ated at group means

Cluster Canonical function

1 2 3

1 −2.120 −0.917 1.895

2 −2.245 2.341 −0.983
3 1.662 −1.458 −1.266
4 8.703 2.777 2.279

Table 4 Structure matrix

Canonical function

1 2 3

Na+ 0.722* 0.436 0.360

Cl− 0.211* 0.055 −0.044
HCO3

− −0.285 0.822* 0.021

Mg2+ −0.316 0.753* −0.355
Ca2+ −0.245 −0.276 0.526*

K+ 0.310 −0.353 −0.475*
SO4

2− 0.021 −0.079 0.258*

*Largest absolute correlation between each variable and any dis-
criminant function

 591 Page 10 of 13 Environ Monit Assess  (2016) 188:591 



D1 ¼ −17:776 þ 0:385 Ca2þ þ 0:023 Mg2þ þ 0:101 Naþ þ 0:050 Kþ þ 0:032 HCO3
−−0:082 Cl−−0:084 SO4

2

D2 ¼ −22:418þ 0:197 Ca2þ þ 0:097 Mg2þ þ 0:057 Naþ þ 0:442 Kþ þ 0:059 HCO3
−−0:011 Cl−−0:163 SO4

2−

D3 ¼ −12:159 þ 0:082 Ca2þ−0:047 Mg2þ þ 0:184 Naþ þ 1:762 Kþ þ 0:028 HCO3
−−0:016 Cl−−0:064 SO4

2−

D4 ¼ −69:366−0:033 Ca2þ−0:179 Mg2þ þ 0:918 Naþ þ 1:393 Kþ þ 0:046 HCO3
−−0:070 Cl−−0:110 SO4

2−

To assign a sample case in a group, the values D1–D4
from these equations are calculated and called discrim-
inant scores. The sample case is assigned to the group

with the higher discriminant score. This is performed for
each case of the data, so all cases are classified in one of
the four groups.

Fig. 5 The dispersion of four
groups according to discriminant
analysis as a projection in
function-1 vs function-2 plane

Table 7 The hit ratio of the discriminant model

Total observations
(n)

Group Predicted group membership

Carbonate Ophiolitic Lava units Pyroclastic–ignimbritic

Original group 17 Carbonate 17 (100 %) 0 (0 %) 0 (0 %) 0 (0 %)

15 Ophiolitic 0 (0 %) 15 (100 %) 0 (0 %) 0 (0 %)

21 Lava units 0 (0 %) 0 (0 %) 21 (100 %) 0 (0 %)

4 Pyroclastic–ignimbritic 0 (0 %) 0 (0 %) 0 (0 %) 4 (100 %)

Cross validateda 17 Carbonate 17 (100 %) 0 (0 %) 0 (0 %) 0 (0 %)

15 Ophiolitic 1 (7 %) 14 (93 %) 0 (0 %) 0 (0 %)

21 Lava units 1 (5 %) 0 (0 %) 19 (90 %) 1 (5 %)

4 Pyroclastic–ignimbritic 0 (0 %) 0 (0 %) 0 (0 %) 4 (100 %)

a Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all
cases other than that case
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The hit ratio of the discriminant model is computed
by comparing the predefined grouping of all cases with
the one predicted from the model. In our case, this scales
to 100 % of successful classification of original grouped
cases or 94.7 % of cross-validated grouped cases
(Table 7).

This accuracy of the method is better than that ob-
tained by Pati et al. (2014) who used CCDA on similar
hydrochemical data with a hit ratio of approximately
90 %. This hit ratio is large enough, so we do not think
that it is necessary, in this case, to use more complex
machine learning methods despite the more accurate
results when analyzing other datasets (Naghibi et al.
2016; Baudron et al. 2013).

The visualization of the discrimination is often very
enlightening. In such graphs, the existence of outliers
and wrong classifications can be observed, as well as the
discriminating power of the method, as it is shown in
Fig. 5. It is noted that the outliers were correctly classi-
fied using the four discriminant functions. The discrim-
ination of groups is clear, and the distances between
group centroids are distinct. This is happening because
each aquifer unit has different geological origin and
consequently different geochemical composition. As a
result, the range values of the ion concentrations of the
four aquifers do not overlap facilitating in that way the
classification of the dataset. Nonetheless, the researcher
should test the proposed CCDA method to such an easy
dataset prior to try it with more complex cases.

The final outcome of the analysis is substantially the
construction of a set of functions (D1–D4) that can be
used for future sample cases in order to categorize them
to a specific hydrogeological unit.

Conclusions

The CCDA method consists of CA and DA and was
applied to hydrochemical data of major ions from 57
samples taken from wells and boreholes of Lesvos
Island in Greece. CA classified the samples into four
distinct groups with clear hydrochemical interpretation
corresponding perfectly to the four main aquifer systems
of Lesvos. It is noteworthy that CA manages to catego-
rize the groundwater samples of volcanic origin into two
subgroups which are composed of different volcanic
aquifer systems, namely the lava units and the pyroclas-
tic–ignimbritic aquifer.

DA proved the feasibility of CA, since 94.7 % of
cross-validated grouped cases were correctly classified.
The obtained discriminant functions provided the most
significant ions which characterize the hydrogeochemi-
cal properties of each aquifer.

Finally, the proposed procedure could be very useful
for the categorization of unknown or doubtful origin
samples, especially in areas with complicated
hydrogeological regimes. This way, CCDA could be
very helpful for improving the quality and size of existing
hydrochemical databases which constitute a common
handicap for integrated water management plans.
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